APX publishes progfams in

these categories:

MATHLIB

SYSTEMS/TELECOMMUNICATIONS
Add floating point capability to your DEEP BLUE C COMPILER
VVVVVVVVVVVVVVVVVVVV (for programmers familiar with DEEP BLUE C) Eetoosnee

by Frank Paris
Requires: DEEP BLUE C COMPLILER (APX-20166)

Full Screen editor
Diskette version (1): ATARI 810 or 1050 Disk Drive

(APX-20231) 48K RAM

Edition A

 CONSUMER-WRITTEN PROGRAMS FOR

TR R AfAévl‘ Progrom T

..Printedin US.A. .. .

MATHLIB

SYSTEMS/TELECOMMUNICATIONS
Add floating point capability to your DEEP BLUE C COMPILER
(for programmers familiar with DEEP BLUE C)

by Frank Paris
Requires: DEEP BLUE C COMPLILER (APX-20166)

Full Screen editor
Diskette version (1): ATARI 810 or 1050 Disk Drive

(APX-20231) 48K RAM

Edition A

MATHITEB

by

Frank Paris
Program and manual contents ©41923 Frank Paris

Copyright notice. On receipt of this computer program and associated
documentation (the software), the author grants you a nonexclusive
license to execute the enclosed software. This software is copyrighted.
You are prohibited from reprodudng, translating, or distributing this
software in any unauthorized manner,

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 85055
To request an APX Product Catalog. write to the address above. or call toli-free:

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/727-5603

Trademarks of Atari

ATARI is a registered trademark of
Atari, Inc. The following are
trademarks of Atari, Inc: 400, 410,
800, 810, 820, 822, 825, 830, 850,
1200XL.

Limited Warranty on Media and Hardware Accessories. Atari. Inc (“Atari”) warrants to the original consumer purchaser that
the media on which APX Computer Programs are recorded and any hardware accessories sold by APX shall be free from
defects 1n material or workmanship for a period of thirty (30) aays from the date of purchase. If you discover such a defect
within the 30-day period. call APX for a return author:zation number, and then return the proguct to APX along with proot of
purchase date. We will repair or replace the proguct at our option. !t you ship an APX product for in-warranty service. we
suggest you package It securely with the problem indicated in writing and insure 1t for value. as Atar assumes no hability for
loss or damage incurred during shipment

This warranty shali not apply if the APX product has been damaged by accident. unreasonable use. use with any non-ATARI
products. unauthorized service. or by other causes unreiated to defective materials or workmanship.

Any applicable implied warranties, including warranties of merchantability and fitness for a particular purpose. are also
limited to thirty (30) days trom the date of purchase. Consequential or incidental damages resulting from a breach of any
applicable express or implied warranties are hereby excluded

The provisions of the toregoing warranty are valid in the U.S. only This warranty gives you specific legal rights and you may
also have other rights which vary from state to state. Some states do not aliow limitations on how iong an implied warranty
lasts. and/or do not aliow the exclusion of incidental or consequential damages. SO the above limitations and exclusions may
not apply to you

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been written by people not
employed by Atari. The programs we seiect tor APX otter something of value that we want to make available to ATARI Home
Computer owners. In order to economically offer these programs to the widest number of people. APX Computer Programs
are not rigorously tested by Atari and are sold on an “as is” basis without warranty of any kind. Any statements concerning the
capabilities or utility of APX Computer Programs are not to be construed as express or implied warranties

Atari shall have no liabtlity or responsibility to the original consumer purchaser or any other person or entity with respect to
any claim. loss. liability. or damage caused or alieged to be caused directly or indirectly by APX Computer Programs. This
disclaimer includes. but is not limited t0. any interruption of services. loss of business or anticipatory profits, and/or incidental
or consequential damages resulting from the purchase. use. or operation of APX Computer Programs.

- Some states do not aliow the imitation or exciusion of imphed warranties or of incidental or consequential damages. so the
above limitations or exclusions concerning APX Computer Programs may not apply 1o you.

Table of contents
INTRODUCTION...1

Overviewl

Required accessories..i
Optional accessories.«l

Contacting the author..l

WHAT DC YOU GET WITH MATHLIB?...2

Summary of MATHLIB commands.Z
Required files not supplied with MATHLIB,..3
Files included with MATHLIB...3

USING MATHLIB..G

Initializing MATHLIB...S

Declaring floating point variables..S
Creating floating point constants..é
Printing a floating point number .7
Integer/floating point conversions.e.7

MATHLIB FUNCTION SPECIFICATIONS...7?

Purpose..?

Function call..?
Input parameters..$
Output parameters...9
Description.9
Functions used..%
Examplew.i0

FUNCTIOMS IN "MATHLIB.CCC'.wel1

Initialize MATHLIB (c_iml)«..12

ATASCII to floating point conversion (c_afp)ie13
Floating point to ATASCII conversion {(c_fasch.14
Unsigned integer to floating point conversion (c_ifp)«.15
Signed integer to floating point conversion (c_sifpli.ié
Floating point to unsigned integer conversion (c_fpi)w17
Floating point to signed integer conversion (c_fpsi)...18
Floating point addition (c_fAdd)...19

Floating point subtraction (c_fsub)..z0

Floating point multiplication (c_fmul)..z1

Floating point division (c_fdiv)...22

Floating point logarithm (c_log and c_log10),.23
Floating point antilogarithm (c_alog and c_alogi0)..24
Floating point exponentiation (c_exp)eZS

Floating point square root (c_sqridew.2é

Return integer portion of a number (c_int)..27
Return fractional portion of a number (c_frach..2&
Compare two floating point numbers (c_cmpl..2?
Get absolute value of number (c_abs)..30

Change sign of floating point number (c_ths)..31
Set floating point number to zero (c_zero)..22
Move floating point number (c_move)..23

TRIGONOMETRIC FUNCTIONS (TRIG.CCC)wi34

Initialize trigonometric functions (c_itrigle.35

Set radians to degrees (c_rad).36

Convert radians to degrees {c_rd)«.37

Convert degrees to radians (c_dr).38

Degrees, minutes, seconds to decimal degrees (c_dmsd)..39
Dedimal degrees to degrees, minutes, seconds (c_ddms)...40
Compute sine of an angle (c_sin)..41

Compute cosine of an angle (c_cos)e42

Compute tangent of an angle (c_tan)...43

Compute arctangent (c_atan)...44

Introduction

OVERVIEW

MATHLIB is a library of C-Language functions that allows you
to do floating point calculations with the ATARI Deep Blue C
Compiler (APX-20164), The Deep Blue C Compiler provides a
wonderful programming language for the ATARI computer,
infinitely more interesting and enjoyable and several times
faster than BASIC. Unfortunately, it doesn’t support floating
point data types. Among other things, this makes Deep Blue C, by
itself, nerxt to impossible to use in advanced graphics
applications, the strong suit of the ATARI Home Computer. This
is because advanced graphics make extensive use of floating
point numbers and trigonometric functions, MATHLIB fills this
gap in the Deep Blue C Compiler.

Using MATHLIB to perform floating point calculations isn‘t as
concise as doing integer arithmetic in C, but it does provide a
full range of floating point mathematical functions, A
demonstration program is included to illustrate how to implement
turtle graphics (with window dlipping) using Deep Blue C with
MATHLIB,
This manual assumes that you’re already familiar with the C
programming language in general and ATARI Deep Blue C in
particular,

REQUIRED ACCESSORIES
DEEP BLUE C COMPILER (APX-20146)
Full screen editor

OFTIONAL ACCESSORIES

ATARI MACRO Assembler

CONTACTING THE AUTHOR
Users wishing to contact the author may write to him at!

4H85S SW Murrasy Blvd.
Beaverton, OR 97005

What do you get with
MATHILIB?

MATHLIB operates on standard ATARI floating point numbers
and provides access to the functions in the ATARI Operating
System Floating Point ROM. MATHLIB provides many
extensions of the ROM capabilities, including trigonometric
functions. All together, MATHLIB provides you with 32 new math
functions for your Deep Blue C Compiler.

SUMMARY OF MATHLIB FUNCTIONS

The following is a summary of the functions provided by
MATHLIB!

® ATASCII to floating point and floating point to ATASCII
conversions;

e signed and unsigned integer to floating point and
floating point to integer conversions;

@ addition, subtraction, multiplication, and division;
e natural and base 10 logarithms and exponentiation;
® square root}

e sine, cosine, tangent, and arctangentl trigonometric
functions in either radians or degrees;

e radian to degree and degree to radian conversions;

e decdmal degrees to degrees, minutes, and seconds, and
vice versa;

e integer or fractional portion of a floating point number;
e comparison of two floating point numbers;

s absolute value of a floating point number;

e change sign of a floating point number;

e set floating point number to zero

e move floating point number

REQUIRED FILES NOT SUPPLIED WITH MATHLIB

MATHLIB assumes that you already have the ATARI Deep Blue C
Compiler, The following files from Deep Blue C are the minimum

required for using MATHLIB (they’re not included with
MATHLIB)

e CC.COM -- Deep Blue C Compiler

e CLINK.COM -- Deep Blue C Linker

e DBC.OBJ -- C run-time library

e AIO.CCC — object for 170 functions
In addition, to construct the turtle graphics demonstration
program included with MATHLIB, you must have the follawing
Deep Blue C files (they also aren’t included) ¢

GRAPHICS.CCC -- object for graphic and game 170

PRINTF.CCC -- object for formatted output

FILES INCLUDED WITH MATHLIB
The following files are included on the MATHLIB diskette!

e MATHLIB.C ~-- source for the non-trigonometric
functions of MATHLIB] this includes all functions except
the trigonometric functions.

e MATHLIB.CCC -- object for MATHLIB.C, This must
always be included in your Deep Blue C link file,

® TRIG.C -- source for the trigonometric functions of
MATHLIB.

s TRIG.CCC -- object for TRIG.C., This needs to be
included in your Deep Blue C link file only if you‘re using
the MATHLIB trigonometric functions,

e MATHLIB.OBJ -- object for the assembly language
interface to the ATARI floating point ROM, This must
always be included in your Deep Blue C link file,
MATHLIB.OBJ is fixed at ATARI RAM hexadecimal

3

locations 2DCC to 2FFF. If you use MATHLIB with your
own assembly language routines, you must ensure that
they don’t use the same locations as MATHLIB.OBJ.
Alternatively, if you have the ATARI MACRD Assembler,
you can use the next file to reassemble MATHLIB.OBJ at
a new starting location, In that case, you will also have to
change the entry points to MATHLIB.OBJ in the
MATHLIB.CCC file and recompile MATHLIB.CCC,

e MATHLIB.ASM =-- Assembly language source for
MATHLIB.OBJ. (Requires ATARI MACRD Assembler
CX&121 to assemble).

e TURTLE.L - source for the mainline MATHLIB
demonstration program. Includes mathematical functions
to execute the basic turtle graphic movements of direction
and distance.

e TURTLE.CCC — object for TURTLE.C,

e CLIPPER.C -~ source for the Cohen-Sutherland Clipping
Algorithm adapted to the ATARI Deep Blue C Language.
Contains functions called by TURTLE.

s CLIPPER.CCC -- object for CLIPPER.C.

e TURTLE.LNK -- Deep Blue C link file to generate the
demonstration program.

e TURTLE.COM — Erxecutable load module of the turtle
graphics demonstration program

Using WMIATHILIB

Note. All MATHLIB function names start with ‘c_’ to
avoid any conflicts with names in your own programs.

INITIALIZING MATHLIB

Before using MATHLIB, you must call the MATHLIB function,
‘c_iml’y If you use the trigonometric functions, you must also call
‘c_itrig’s These functions initialize the constants and variables
that MATHLIB must use to perform its functions. Neither of
these routines has any parameters and so they’re called as
follows:

c_iml ()}
c_itrig()}

Note that ‘c_itrig’ is called only if the trigonometric functions
are used and TRIG.CCC is linked into your load module, ‘c_iml’
must be called before ‘c_itrig’,

DECLARING FLOATING POINT VARIABLES

MATHLIB uses standard ATARI floating point numbers. You
don’t have to understand the format of ATARI floating point
numbers to use MATHLIB, and it'’s beyond the scope of this
manual to explain it. But if you’re curious refer to the APX
publication, De Re ATARI (APX-?0002), pp. 8-45 and 8-44, The
only thing you have to know is that ATARI floating point
numbers each occupy ¢ bytes of ATARI RAM,

MATHLIB uses C language character arrays to hold floating point
numbers. To declare a variable that will hold a floating point
number, code the following (assuming the name of your variable
is ‘fpvar’)

char fpvarlébls

All MATHLIB floating point variables must be declared in that
manner, On the other hand, all function arguments referencing
floating point numbers in MATHLIB functions are character
pointers, This means that when you reference a floating point
number in a MATHLIB function, you simply use the name of the
variable without incdluding the subscript. For example, suppose
you want to add two floating point numbers, ‘fa’ and ‘fb’, and you

5

want the results stored in ‘fb’s The variables must have been
declared as follows!

char falél, fbléd}

The MATHLIB function that adds two floating point numbers is
c_fadd. It accepts three arguments! the two numbers to be added
together, followed by the result. Thus to add the two numbers,
you would code!

c_fadd (fa, fb, Tb)}

This adds ‘fa‘ to ‘fb’ and stores the results in ‘fb’s Notice that
you specify the name of the variable only, omitting the -
subscripts.

CREATING FLOATING POINT CONSTANTS

Deep Blue C does not support the standard C language "float"
data type. Therefore, it’s impossible to declare a floating point
constant in that language. For this reason, constants can never
be explicitly passed as arguments to a MATHLIB function. First
create the floating point constant by the appropriate MATHLIB
routine, which moves it to a six byte character array you've
declared in your program.

Floating point constants start out as ATASCII character strings,
which are converted in a single step to the standard ATARI
floating point representation. This is done with the ‘c_afp’
MATHLIB function, which stands for "ATASCII to Floating
Point", ‘c_afp’ uses two character pointers as arguments. The
first points to the ATASCII character string that represents the
constant, and the second points to the six byte character array
that will receive the floating point representation of the
constant.

For example, suppose you wish to create a floating point
representation of the constant, pi (3,14159265) and store it in
character array ‘fppi’s You’d code the following!

char fppilél, Xpntr}
pntr = "3.14159265";
c_afp (pntr, fppi);

In this example, ‘pntr’ is set to point to the ATASCII character
string and ‘c_afp’ is used to convert that string to its ATARI
floating point representation, which is stored in the six byte

character array, ‘fppi’s ‘fppi’ may now be used in function calls to
pass the constant, pi, to other routines,

PRINTING A FLOATING POINT NUMBER

You can’t print an ATARI floating point number directly. You
must convert it to an ATASCII character string with the
MATHLIB function, ‘c_fasc’, which stands for "Floating Point to
ATASCII" This function accepts two character pointers as
arguments. The first points to the floating point number, and
the second points to a character array that will receive the
ATASCII representation of the number. The character array
holding the converted number can then be used in a ‘printf’
command to print the floating point number,

Before giving an example, the size of the array for the ATASCII
representation of the floating point number must be considered.
ATARI floating point numbers provide up to ten digits of
predsion. In addition, the number may be prefaced with a minus
sign. The number may also include a decimal point or a signed two
digit exponent of the form, ‘E-xx’ where ‘xx’ is the exponent.
Finally, the ATASCII floating point number will be followed by a
null character (the C language standard for character strings)

This all adds up to 17 characters. Thus, the character array to
hold the converted floating point number must be declared 17
characters long.

Now for the example, Suppose you have a floating point number in
a & character array, ‘fpnbr’, and you want to print it, using
‘printf’s You could do it with the following code!

char fpnbrLél: /7% floating point number x/

char arfpnbril73) /7% ATASCII representation of
the f.p. rumber x/

c_fasc (fpnbr,; arfpnrnbrd: /%X convert f.p. to
ATASCITI x/

printf ("%Zs", arfpnbr)} /X print ATASCII
representation x/

INTEGER/FLOATING POINT CONVERSIONS

MATHLIB provides functions for converting back and forth
between integers and floating point numbers. MATHLIB
distinguishes between two kinds of integers! unsigned 14 bit
numbers in the range 0 to 45,325 and signed numbers in the range
=-32,748 to +32,7¢7. Unsigned numbers are of limited value, since
they aren’t supported by Deep Blue C (Deep Blue C will treat an

7

unsigned number greater than 22,747 as a negative number.
However, if you know your floating point number isn‘t negative,
it'e slightly faster to use the unsigned MATHLIB functions,
since it‘s unsigned integers that the ATARI floating point ROM
deals with directly. Signed integers require extra processing on
the part of MATHLIB,

If you call the unsigned floating point to integer MATHLIB
function and the floating point number is greater than 65,535,
you’ll receive error status back from the function. Likewise, if
you call the signed floating point to integer MATHLIB function
and the floating point number is greater than £2,7¢7, you will
receive error status back. Remember, if you attempt to use an
unsigned integer greater than 32,747 with Deep Blue C, it will
treat it as a negative number.

The four conversion routines are as follows., (Details may be
found in a later section of this manual,)

e c_ifp -- unsigned integer to floating point
e c_fpi —- unsigned floating point to integer
e c_sifp —- signed integer to floating point

@ c_sfpi -- signed floating point to integer

MATHILTB function specifications

The following sections of this manual contain descriptions of
each function within MATHLIB. Each description contains the
following seven headings!

PURPOSE

This is a one or two sentence description of the purpose
of the function,

FUNCTION CALL

This is an example of how the function is called. It shows
all the parameters you should include when you call the
function, An exception is the ‘status’ return value of the
function. The return value is usually an indication of
whether the operation was carried out successfully or not.
The main reason why it may have failed is an out of range
condition! the result of the function may be out of the
range of values that a standard ATARI floating point
value can take, This range is 10##-98 to 10##+98, If you
know that the answer must be within this range, you don‘t
have to include the ‘status’ return value in your call to
the function.

INPUT PARAMETERS

This describes all the parameters input by the calling
routine to the function. The first line of each description
shows the name of the parameter as used in the
FUNCTION CALL, as well as the data type of the
parameter. Each is followed by a description of the
parameter.,

OUTPUT PARAMETERS

This describes all the parameters that are output by the
function to the calling function.

DESCRIPTION

This section provides a description of what the function
actually does in terms of the input and output parameters,

FUNCTIONS USED

This section lists the functions used to implement the
function being described. These functions may be other
MATHLIB functions or functions from the AIO.CCC Deep
Blue C library, If nothing but standard features of the
Deep Blue C language itself are used, "None" appears
under this heading.

EXAMFPLE

This optional section gives an example of what the
function does. If it‘s obvious from the description of the
function what it does, an example isn’t given. The
examples usually start with ATASCII character strings
representing floating point numbers, convert them to
ATARI floating point, perform the function, convert them
back to ATASCII and then print the result with ‘printf’,
The printed results follow the ‘printf’ statement in
italics.

Within the various sections, if a parameter name is used in
descriptive text, it appears in single quotation marks. If the
parameter is a pointer and the value pointed to is intended, an
asterisk preceeds the variable, within the single quotation
marks,

10

Functionmns- in MATHIL.IB.CCC”

The functions described below, in the file, MATHLIB.CCC, are
the non-trigonometric functions of MATHLIB. The following is a
complete list of these functions in the order they’re specified in
the following pages! .

c_iml?
c_afp?l
c_fasc?
c_ifp?

c_sifp?
c_fpist
c_fpsit

c_fadd:
c_fsub?l
c_fmull
c_fdiwv?
c_log?
c_loglio?
c_aloal
c_alogll:
c_exp!
c_sqrt

c_imt?
c_fraci

c_omMpi
c_abs?

c_chst
c_zero:
c_mave?

Initialize MATHLIE.CCC

ATASCII to Floating Foint Conversion
Floating Foint to ATASCII Conversion
Unsigrned Integer to Floating Foint
Conversion

Sigrned Integer to Flosting Foint
Conversion

Floating Foirmt to Unsiqried

Inteqger Cornversion

Floating Foint to Sigmed Inteaqer
Conversion

Floatirng Foint Addition

Floating Foint Subtraction

Floating Foint Multiplicastion
Floating Foint Division

Floating Foinmt Natural lLogarithm
Floating Foint Common Logarithm
Floating Foint Natural Antilogarithm
Floating Foint Common Antiloqarithm
Floating Foint Exponentiation
Fleoating Foint Square Root

Returmrn Integer Fortiorm of Floating
Foint Number

Returm Fractional Fortion of
Floating Foimnt Number

Compare Two Floating Foint Numbers
Get Absolute Value of Floasting

Foint Number

Charmnge Sign of Floasting Point Number
Set Floating Foimt Number to Zero
Move Floating Foint Number

1

INITIALIZE MATHLIB
PURPOSE

To initialize the constants and variables required by
MATHLIB to perform its functions.

FUNCTION CALL
c_imi0)}

INPUT PARAMETERS
None

OUTPUT PARAMETERS
None

DESCRIPTION

This function must be called once before any MATHLIB
routine is executed,

FUNCTIONS USED

c_afp

12

ATASCII TO FLOATING POINT CONVERSION

PURPOEE
To convert an ATASCII character string representation of
a floating point number to ATARI floating point format,

FUNCTION CALL
status = c_afp (acs, fpn)}
INPUT PARAMETERS

3cs char array
pointer to 3 character strirg containing the ATASCII
representation of a floatirg point number.

OUTPUT PARAMETERS

fpn char array
poirter to a six-byte character array that will receive the
standard ATART floatirg Foirt rwmber correspondirg to the
ATASCIT irput rumber,

status integer scalar
return status!
0 = ATASCII nuber corwerted correctls,
-1 = the first byte of ATASCII number is irwalid.

DESCRIPTION

This function takes bytes from ‘#acs’ until it encounters
a byte that can’t be part of the number. The bytes
scanned to that point are then converted to a floating
point number, which is stored in array ‘fpn’, which must
be six characters long. If the first byte encountered in
‘#acs’ is invalid, ‘status’ is set to -1, Otherwise it‘s set
to 0.

FUNCTIONS USED
This function calls the ATARI floating point ROM
directly.

EXAMPLE
char pntr, fpnl61}

pntr = "54,789";
c_afp (pntr, fpn)}

13

FLOATING POINT TO ATASCII CONVERSION
PURPOSE

To convert a standard ATARI floating point number to a
standard C-Language character string, suitable for
printing.

FUNCTION CALL
c_fasc (fpn, acs);
INPUT PARAMETERS

fpn char array
pointer to six byte character array that contains 2
floatima point number in standard ATARI format.

OUTPUT PARAMETERS

acs char array
pointer to 17 byte character array that will
contain the printable ATASCIT representation of
the floatimg point nueber,

DESCRIFTION

This function converts the floating point number in ‘fpn’
to a printable form (ATASCII) in the character array,
‘acs’y which must be at least 17 bytes long. No error
conditions are detected by this function.

FUNCTIONS USED

This function calls the ATARI floating point ROM
directly.

EXAMPLE

char pntr, fpnlé], outputl173;
pntr = "54.,789"}

c_afp (pntr, fpn);

c_fasc (fpn, output);

printf ("%s", output);

56,789

14

UNSIGNED INTEGER TO FLOATING POINT CONVERSION
PURPOSE

To convert an unsigned integer (0 to ¢5,535) to a standard
ATARI floating point number,

FUNCTION CALL
c_ifp (usint, fpn);
INPUT PARAMETERS

usirt integer scalar
unsigned integer (0 to 65,533) to be
corverted to floating point

frn char array
pointer to six byte character array to
receive converted floatirg point rusber.,

DESCRIPTION

This function converts the unsigned integer in ‘usint’ to a
standard ATARI floating point number and stores the
results in the six byte character array pointed to by ‘fpn’.
This function detects no error conditions. Note that Deep
Blue C does not support unsigned integers. All unsigned
integers greater than 22,747 are treated as negative
integers by Deep Blue C.

FUNCTIONS USED

This function calls the ATARI floating point ROM
directly.

EXAMPLE

int integer;

char fpnl4], outputl171];
integer = -50003

c_ifp (integer, fpn)
c_fasc (fpn, output);
printf ("%s", output)}
60524

15

SIGNED INTEGER TO FLOATING POINT CONVERSION
PURPOSE

To convert a signed integer (-52768 to +32,747) to a
standard ATARI floating point number.

FUNCTION CALL
c_sifp (sint, fpn)
INPUT PARAMETERS

sint integer scalar
signed integer (-32,768 to +32,767) to be
corverted to flostirg poirt

OUTPUT PARAMETERS

fpn char array
pointer to six byte character array to
receive corverted flostirm poird rwmber.

DESCRIPTION

This function converts the signed integer in ‘sint’ to a
standard ATARI floating point number and stores the
results in the six byte character array pointed to by ‘fpn’,
This function detects no error conditions.

FUNCTIONS USED

This function calls ‘c_ifp’ to implement its functionality.
Thus, it‘s slightly less effident to use this function for
positive integers than ‘c_ifp’ directly.

EXAMPLE

int integer}

char fpnlél, outputl17];
integer = -5000;

c_sifp (integer, fpn);
c_fasc (fpn, output);
printf ("%s", output);
-5000

16

FLOATING POINT TO UNSIGNED INTEGER CONVERSION

PURPOSE

To convert a standard ATARI Floatiﬁg point number to an
unsigned integer (0 to £5,463%5),

FUNCTION CALL
status = c_fpi (fpn, Susint)}

INPUT PARAMETERS
fpn char array
pointer to 4 byte array containirg a standard ATARI floatirm
point rumber to be corwerted to an unsigred integer,

OUTPUT PARAMETERS
usint integer scalar
integer variable to receive the corverted ursioned integer,

status integer scalar
returned status!
0 = floatirQ poirt number converted successfully,
-1 = floating point number is >= 65,535.5;
ro conversion performed.
-2 = floating point number is negative;
no conversion performed.

DESCRIPTION
This function converts the standard ATARI floating point
number in ‘fpn’ to an unsigned integer. If the floating
point number is negative, -2 is returned as status; no
conversion is performed. If the floating point number is
greater than or equal to ¢&5,535.5, -1 is returned as
status; no conversion is performed. This function
performs true rounding, not truncation, during conversion.

FUNCTIONS USED
This function calls ATARI floating point ROM directly.

EXAMPLE
char pntr, fpnl61}
int integer;
pntr = "40000"}
c_afp (pntr, fpn)
c_fpi (fpn, &integer);
printf ("%d", integer);

=-3034

17

FLOATING POINT TO SIGNED INTEGER CONVERSION

PURPOSE

To convert a standard ATARI floating point number to a
signed integer (-32,76€ to +32,747),

FUNCTION CALL
status = c_fpsi (fpn, &sint);
INPUT FPARAMETERS

fpn cher array
pointer to six byte character array containing the
floating point mumber to be corwerted,

OUTPUT PARAMETERS

sint integer scalar
integer variable to receive the converted sioned integer.

status return status!
0 = floating point number converted successfully.
-1 = absolute value of flosting poirt number > 32,767.5.

DESCRIPTION

This function converts the standard floating point number
in ‘fpn’ to a signed integer. If the floating point number
is greater than or equal to 32,7675, -1 is returned as
status and no conversion is performed.

FUNCTIONS USED
This function calls ‘c_fpi’ to implement its functionality.
Thus, it’s slightly less effident to use this function for
positive integers than ‘c_fpi’ directly.

EXAMPLE

char pntr, fpnlél}

int integer;

pntr = "60000"}

c_afp (pntr, fpn);
c_fpsi (Fpn, &integer)
printf ("%d", integer);
-5536

18

FLOATING POINT ADDITION

PURPOSE
To add two standard ATARI floating point numbers,

FUNCTION CALL
status = c_fadd (fpni, fpn2, fpsum);

INPUT PARAMETERS
fenl char array
poirter to a six byte character array containing
- the first floatirg poirt number.

fpn2 char array
pointer to 3 six byte character array containimg
the second floatirg point number.

OUTPUT PARAMETERS
fpsum char array
pointer to a3 six byte character array that will
receive the sum of the first two floating point numbers,

status integer scalar
return statust
0 = addition performed correctly; -1 = out of rarge result,

DESCRIPTION
This function adds ‘#fpn1’ to ‘#fpn2’ and stores the result
at ‘fpsum’. If it‘s outside the range of ATARI floating
point number format, -1 is returned as status. If the
operation completes successfully, 0 is returned as status.
‘fpnl’ and ‘fpn2’ may be the same pointer and ‘fpsum’ may
be the same pointer as ‘fpni’ or ‘fpn2‘,

FUNCTIONS USED
This function calls ATARI floating point ROM directly,

EXAMPLE
char #pntr, fp1l4], fp2L61, outputli17];
pntr = "221,12"
c_afp (pntr, fp1)
pntr = "21,123";
c_afp (pntr, fp2)}
c_fadd (fpl, fpz, fp2);
c_fasc (fp2, output);
printf ("%s", output);
242,243

19

FLOATING POINT SUBTRACTION

PURPOSE

To subtract one standard ATARI Floa‘tmg point number
from another.

FUNCTION CALL
status = c_fsub (minuend, subtrahend, difference);

INPUT PARAMETERS
mirverd char array
poirter t0 a six character array containimg
the mirnerd of the subtraction operation.
subtrahend char array
pointer to a six character array containing
the subtrahend of the subtraction.

OUTPUT PARAMETERS
difference char array
pointer to a ¢ character array that will contain the
difference between the minvend ard the subtrahend.
status integer scalar
return status!
0 = suotraction performed correctly;
-1 = out of range result.

DESCRIFTION
This function subtracts ‘#subtrahend’ from ‘#minuend’ and
stores the result at ‘difference’. If it’s outside the range
of ATARI floating point numbers, -1 is returned in
‘status’. Otherwise 0 is returned, showing successful
computation. ‘difference’ may be the same pointer as
‘minuend’ or ‘subtrahend’.

FUNCTIONS USED
This function calls ATARI floating point ROM directly.

EXAMPLE
char #pntr, fp1lé1], fp206], outputl 171}
pntr = "321,12"}
c_afp (pntr, fpi)
pntr = "21,123"}
c_afp (pntr, fp2%
c_fsub (fp1, fp2, fp2)}
c_fasc (fp2, output)
printf (*%s", output);
299,997

20

FLOATING POINT MULTIPLICATION

PURPOSE

To multiply two standard ATARI floating point numbers
together,

FUNCTION CALL
status = c_fmul (multiplicand, multiplier, product);

INPUT PARAMETERS
mltiplicand char array
pointer to 3 6 character array containing the
mltiplicand of the multiplication operation.
multiplier char array
pointer to a2 6 character array containirg the
mltiplier of the multiplication operation.

OUTPUT PARAMETERS
product char array
poirter to 3 six character array that will
contain the product of the multiplication,
status integer scalar
return status!
§ = multiplication performed correctly.
-1 = out of range result,
DESCRIPTION
This function multiplies ‘#multiplicand’ by ‘#multiplier’
and stores the result at ‘product’, If the result is outside
the range of standard ATARI floating point numbers, -1 is
returned in ‘status’. Otherwise 0 is returned, showing a
successful computation. ‘multiplicand’ and ‘multiplier’ may
be the same pointer and ‘product’ may be the same pointer
as ‘multiplicand’ or ‘multiplier’,

FUNCTIONS USED
This function calls ATARI floating point ROM directly.

EXAMPLE
char #pntr, fp1L4], fp2L41], outputl17];
pntr = "321,12"}
c_afp (pntr, fp1)}
pntr = "21,122";
c_afp (pntr, fp2);
c_fmul (fp1, fp2, fp2)
c_fasc (fp2, output);
printf ("%s", output);
6722,01774

21

FLOATING POINT DIVISION

PURPOSE

To divide one standard ATARI floating point number by
another,

FUNCTION CALL
status = c_fdiv (dividend, divisor, result);

INPUT PARAMETERS
dividerd char array
poirter to a six byte character array containing
the dividend of the divide operation.

divisor char array
poirter to 2 six byte character array containing
the divisor of the divide operation.

OUTPUT PARAMETERS
result pointer to 3 six character array that will contain
the result of the division operation.

status integer scalar
return status!
0 = division was successful
-1 = ot of rarge result or divisor is zero.

DESCRIFTION
‘sdivisor’ is divided into ‘#dividend’ and the result is
stored at ‘result’s If the result is out of the range of
standard ATARI floating point numbers or the divisor is
zero, -1 is returned as status. Otherwise, 0 is returned.
‘result’ may be the same pointer as ‘dividend’ or ‘divisor’,

FUNCTIONS USED
This function directly calls ATARI floating point ROM.

EXAMPLE
char #pntr, fp1L61], fp2Lé1, outputl171}
pntr = "321,12"}
c_afp (pntr, fp1)
pntr = "21,123";
c_afp (pntr, fp2)
c_fdiv (fp1, fp2, fp2)}
c_fasc (fp2, output)
printf ("%s", output);
15.202386

22

FLOATING POINT LOGARITHM

PURPOSE

To find the logarithm of a standard ATARI floating point
number.

FUNCTION CALL
status = c_log (nbr, log)}
status = c_log10 (nbr, log);

INPUT PARAMETERS

ror char . 3rray
pointer to 3 six byte character array
containing a stardard ATARI floatirg poirt
rimber whose logarithm is desired.

OUTPUT PARAMETERS

log char array
poiriter to 3 six byte character array
that will receive the logarithw of ‘Xrbr’/,
status integer scalar
return status!
0 = logarithm successfully computed.
-1 = regative rwmber or overflow.

DESCRIPTION
‘c_log’ takes the natural logarithm (base e) and ‘c_log10’
takes the common logarithm (base 10), If ‘#nbr’ is
negative or an overflow results, ‘result’ is set to -1,
Otherwise it is set to ¢, ‘nbr’ and ‘log’ can be the same
painter,

FUNCTIONS USED
Both functions directly call the ATARI floating point
ROM.,

EXAMPLE
char #pntr, nbrlé1, logléd, answer(171];
pntr = "254,512"
c_afp (pntr, nbr)}
c_log (nbr, log)}
c_fasc (log, answer);
printf ("%s", answer);
5.5471754

23

FLOATING POINT ANTILOGARITHM

PURPOSE

To find the antilogarithm of a standard ATARI floating
point number,

FUNCTION CALL
status = c_alog (nbr, antilog);
status = c_alog10 (nbr, antilog);

INPUT PARAMETERS
ror thar array
pointer to 2 six byte character array
containing 8 standard ATART floating point
nunber whose antilog is desired.

OUTPUT PARAMETERS
antilog char array
pointer to a six byte character array that will
receive the antilogaritim of ‘xnbr’,

status integer scalar
return status!
0 = antilog taken successfully
-1 = overflow

DESCRIPTION
‘c_alog’ takes the natural antilog and ‘c_alog10’ takes the
common antilog. The natural log is e (2,7182818) raised to
the power ‘#nbr’. The common antilog is 10 raised to the
power ‘#nbr’. If an overflow results, -1 is returned as
status. Otherwise 0 is returned. ‘nbr’ and ‘antilog’ can be
the same pointer.

FUNCTIONS USED
Both functions directly call the ATARI floating point
ROM,

EXAMPLE
char #pntr, nbrlé1], loglél, answer[171}
pntr = ¥5,5471754";
c_afp (pntr, nbr)}
c_alog (nbr, log)}
c_fasc (log, answer);
printf ("%s", answer);
256512

24

FLOATING POINT EXPONENTIATION

PURPOSE

To raise a standard ATARI floating point number to the
power of another one,

FUNCTION CALL
status = c_exp (base, exponent, result);

INPUT PARAMETERS

base

exponent

char array

pointer to a 6 byte character array containirg 3 standard
ATART floatirm poirt number to be raised to a pouer.

char array

poirter to 3 six byte character array containirg

3 standard ATARI floatirg point number to be

used as the exponert of the rumber at ‘base’.

OUTPUT PARAMETERS

result

status

DESCRIPTION

char array

pointer to 3 6 byte character array that will be set to
the ruwmber resultirg from raisirg ‘Xbase’

to the power ‘Xeponent’.

integer scalar

return status!

0 = operation completed successfullyy -1 = out of range

The number at ‘base’ is raised to the power at ‘exponent’
and the result is placed in ‘result’. ‘base’ and ‘exponent’
can be the same pointer and ‘result’ can be the same
pointer as ‘base’ or ‘exponent’, If the ‘result’ isn’t within
the range of a standard ATARI floating point number, -1
is returned as status. Otherwise 0 is returned.

FUNCTIONS USED

c_fmul

c_log10
c_alogi0

EXAMPLE

char #pntr, bas[é1, expl6], resultlé6], answer[17])
pntr = "2,27"}

c_afp (pntr, bas);

pntr = "7,25";

c_afp (pntr, exp)

c_exp (bas, exp, result);

c_fasc (result, answer);

printf ("%s", answer);

95334237

25

FLOATING POINT SQUARE ROOT

PURPOSE

To take the square root of a standard ATARI floating
number. -

FUNCTION CALL
status = c_sqrt (nbr, sqroot);

INFUT PARAMETERS
ror char array
pointer to 2 six byte charactier array thet cortairs
the standard ATART floating poirt rumber
whose square root is desired.

OUTPUT PARAMETERS
sqroot char array
pointer to 2 six byte character arrag thet will
contain the square root of ‘Xrbr’ in standard ATART
flosting poirt format.,
status integer scalar
return status!
0 = square root taken successfully,
-1 = out of range
-2 = ‘zrbr’ is negative.

DESCRIPTION
This function takes the square root of the positive
number at ‘nbr’ and stores it at ‘sqroot’. If the square
root is taken successfully, 0 is returned as status. If
‘*nbr’ is negative, -2 is returned. If the result is out of
the range of a standard ATARI floating point number, -1
is returned.

FUNCTIONS USED
c_fmul
c_logi0
c_alogi0

EXAMPLE
char #pntr, nbrié1l, sqrtlé], answer[17];
pntr = "256.512"
c_afp (pntr, nbr);
c_sqrt (nbr, sqrt)}
c_fasc (sqrt, answer);
printf ("%s", answer);
16.01599201

26

RETURN INTEGER PORTION OF A NUMBER

PURPOSE

To return the integer portion of a standard ATARI

floating point number. The result is a floating point
number.

FUNCTION CALL
status = c_int (nbr, intpar);

INPUT PARAMETERS
nor char array
poirter to a & byte character array containing 3
standard ATARI flostirg poirt number for which the
integer portion is desired.

OUTPUT PARAMETERS
intpor char array
poirter to a & byte character array to receive
the integer portion of ‘Xrbr’. The result is
itself a standard ATARI floatirg point number.

status integer scalar
return status!
0 = normal completion.
-1 = no fractional portion to truncates
‘sintpor’ is set to ‘rbr’.
-2 = ‘%nbr’ < 1} ‘xintpor’ set to standard
ATART floatirg point zero.

DESCRIPTION
The fractional part of ‘#nbr’ is truncated and the result is
stored in ‘*intpor’. Non-zero ‘status’ doesn’t indicate an
error condition! merely special cases, as specified above.
‘nbr’ and ‘intpor’ can be the same variable,

FUNCTIONS USED
move (in Deep Blue C AIQ.CCC library)

EXAMPLE
char #pntr, nbr{&], intplé1, answer[177}
pntr = "1234,5¢L78"}
c_afp (pntr, nbr)
c_int (nbr, intp)
c_fasc intp, answer);
printf ("%s", answer)}
1234

27

RETURN FRACTIONAL PORTION OF A NUMBER

PURPOSE
To return the fractional portion of a standard ATARI
floating point number.

FUNCTIONAL CALL
status = c_frac (nbr, frapor);

INPUT PARAMETERS
nor char array
pointer to 2 six character array containing
2 standard ATARI flostirg poirt number for
which the fractionsl portion is desired.

OUTPUT PARAMETERS
fracpor char array
pointer to a3 six character array to
receive the fractionsl portion of ‘Xrbr’.

status integer scalar
return status!
0 = normal completion
-1 = ‘zpbr < 1'% no integer portion to
truncate. ‘Xfracpor’ set to ‘xrbr’,
-2 = no fractionzl portion to ‘xnbr’. ‘Xfraceor’
set to standard ATART flosting poirt zero.

DESCRIPTION!
The integer portion of ‘#nbr’ is truncated and the result
is stored at ‘fracpor’. Non-zero ‘status’ doesn’t indicate
an error condition! merely special cases as indicated
above. ‘nbr’ and ‘fracpor’ can be the same variable,

FUNCTIONS USED
move (in Deep Blue C AIO.CCC library)
c_int
c_fsub

EXAMPLE
char #pntr, nbrl¢], fracplél, answer[17];
pntr = "1234,5678";
c_afp (pntr, nbr)}
c_frac (nbr, fracp)
c_fasc (fracp, answer);
printf ("%s*", answer);
0.5678

28

COMPARE TWO FLOATING POINT NUMBERS

PURPOSE
To compare two floating point numbers and return an
indication of the relative magnitudes of the two numbers.,

FUNCTION CALL
result = c_cmp (fpni, fpn2);

INPUT PARAMETERS
fpnl char array
poirter to a six byte character array
containing the first number to be compared

fpn2 char array
pointer to a 6 byte character array containing
the secord rumber to be compared

OUTPUT PARAMETERS
result integer scalar
an irdication of the comparison!
-1 = ‘sfpnl’ is less than ‘xfpr2‘.
0 = ‘xfpnl’ equals ‘xfpr2’,
+1 = ‘xfpnl’ is greater than ’‘xfpn2’.

DESCRIPTION
‘#fpnl’ is compared to ‘#fpn2‘y If ‘#fpnl’ is less than
‘#fpn2’y ‘result’ is set to -1, If they’re equal, ‘result’ is
set to 0. If '#fpnl’ is greater than '#fpn2’, ‘result’ is set
to +1,

FUNCTIONS USED
c_fsub

EXAMPLE
#pntr, nbri1, nbr2,}
int status;
pntr = "-27,45";
c_afp (pntr, nbri)}
pntr = "14,55"}
c_afp (pntr, nbr2);
status = c_cmp (nbri, nbr2)
printf ("%d", status);
-1

29

GET ABSOLUTE VALUE OF NUMBER
PURPQOSE

To compute the absolute value of a standard ATARI
floating point number.

FUNCTION CALL
c_abs (fpn, absfpn);
INPUT PARAMETERS

fpn cher array
poirter to 2 é byte character array containing
the standard ATARI flostirg poirt number
for which the absolute value is desired.

OUTPUT PARAMETERS

absfpn char array
pointer to a six byte character array
to receive the standard ATARI flosting
point absolute value of ‘xfpn’,

DESCRIPTION

The absolute value of ‘#fpn’ is taken and stored at
‘absfpn’, ‘fpn’ and ‘absfpn’ can be the same variable.

FUNCTIONS USED
None
EXAMPLE

char #pntr, nbrlé1, absnbrlé], answer[171}
pntr = *-15,7895"

c_afp (pntr, nbr)}

c_abs (nbr, absnbr);

¢_fasc (absnbr, answer);

printf ("%s", answer)}

-15.7895

CHANGE SIGN OF FLOATING POINT NUMBER
PURPOSE

To change the sign of a standard ATARI floating point
number,

FUNCTION CALL
c_chs (fpn, negfpn);
INPUT PARAMETERS

fen char array
pointer to 3 six byte character array
containing 3 standard ATARI floating point
rumber for which a sien charge is desired

OUTPUT PARAMETERS

reafpn char array
pointer to 3 six byte character array
to receive the negation of ‘xfpn’.

DESCRIPTION

The sign of ‘#fpn’ is changed and the result is stored at
‘negfpn’. ‘fpn’ and ‘negfpn’ can be the same variable,

FUNCTIONS USED
None
EXAMPLE

char #pntr, nbrl41], outputl4], answer(171}
pntr = "15,7895"

c_afp (pntr, nbr);

c_chs (nbr, output)h

c_fasc (output, answer);

printf ("%s", answer);

-15,72%%

31

SET FLOATING POINT NUMBER TO ZERO
PURPOSE
To obtain a standard ATARI floating point zero.
FUNCTION CALL
c_zero (fpn)}
INPUT PARAMETERS
None
OUTPUT PARAMETERS
fpn char array
pointer to a six byte character array to receive
3 standard ATARI floatirg point zero.
DESCRIPTION
A standard ATARI floating point zero is moved to ‘fpn’.
FUNCTIONS USED
move (in Deep Blue C AID.CCC library)
EXAMPLE
char fpnl0], answer[171}
c_zero (fpn);
c_fasc (fpn, answer);

printf ("%s", answer);
0

32

MOVE FLOATING POINT NUMBER
PURPOSE

To move a floating point number from one place
another.

FUNCTION CALL
c_move (fpni, fpn2)}
INPUT PARAMETERS

fpnl char array
poirter to0 a six byte character array
containing a standard ATART floating
number to be moved.

OUTPUT PARAMETERS

fpn2 char array
pointer to a3 six byte character array to
receive ‘xfpni’.

DESCRIFPTION
‘#fpnl’ is moved to ‘fpn2’.
FUNCTIONS USED

move (in Deep Blue C AIO.CCC library)

EXAMPLE

char #pntr, fpnilé], fpn2lé1], answer[171}
pntr = "&&"}

c_afp (pntr, fpnl)}

c_move (fpni, fpn2);

c_fasc (fpn2, answer);

printf ("%s", answer))

b6

33

to

Trigonometric functions (TRIG.CCOC)

This section describes all of the trigonometric functions of
MATHLIB, contained in TRIG.CCC. The following is a complete
list of the trigonometric functions, in the order described in the
following pages:

c_itrigt Initislize Trigonometric Functions

c_rad? Set Radians or Degrees

c_rd? Cornvert Radians to Degrees

c_dr? Cornmvert Deqrees to Radians

c_dmsd? Decerees, Minutes, Seconds to Decimal
Degrees

c_ddms? Decimal Degrees to Deqgrees, Minutes,
angd Seconds

c_sin: Compute Sime of arn Angle

c_cost Compute Cosine of an Arngle

c_tansd Compute Tarngent of an Angle

c_atan? Compute Arctangent (Argle of =&
Tangent)

In the specifications that follow, the term, "decimal degrees" is
usede This means degrees, including fractional degrees,
expressed as a floating point number., This is in contrast to an
angle expressed in degrees, minutes, and seconds. For example,
the decimal degrees equivalent to 30 degrees, 25 minutes, and 37
seconds are 20.42694444 decimal degrees.

34

INITIALIZE TRIGONOMETRIC FUNCTIONS

PURPOSE
To initialize the trigonometric functions in MATHLIB

FUNCTION CALL
c_itrig()}

INPUT PARAMETERS
None

OUTPUT PARAMETERS
None

DESCRIPTION
This function initializes the constants and variables
required by the trigonometric functions of MATHLIB. It
must be called before calling any of the trigonometric
functions of MATHLIB. Failing to do so will cause the
trigonometric functions to produce incorrect results,
‘c_itrig’ sets MATHLIB to operate with radians rather
than degrees. See the next function to set MATHLIB to
operate with degrees.

FUNCTIONS USED

c_afp

35

SET RADIANS OR DEGREES
PURPOSE

To tell MATHLIB whether to operate with degrees or
radians when performing trigonometric operations.

FUNCTION CALL
c_rad (flag);
INPUT PARAMETERS
flag integer scalar
flag indicating radians or degrees:
zero = degrees
norzero = radians
OUTPUT PARAMETERS
None
. DESCRIPTION
This function tells MATHLIB whether trigonometric
computations are performed in radians or degrees. It may
be called at any time to change the current mode. Calling
‘c_itrig’ sets the mode to radians.

FUNCTIONS USED

None

36

-CONVERT RADIANS TO DEGREES

PURPOSE

To convert radians to decimal degrees.

FUNCTICON CALL
status = c_rd (rads, degrees);

INPUT PARAMETERS

rads char array
pointer to a 6 byte character array containirg
3 standard ATARI floatirg point number specifyirg
the rumber of radiars to convert to degrees,

OUTPUT PARAMETERS

degrees char array
poirter to 3 six byte character array to
receive the number of degrees equal to
‘Yrads’ radiars, in standard ATART
floatiry point format.

status integer scalar
return status!
0 = conversion performed successfully
-1 = ot of rance

DESCRIPTION

This function converts radians to decimal degrees. ‘rads’
and ‘degrees’ may be the same variable,

FUNCTIONS USED!
c_fdiv

EXAMPLE
char #pntr, radians[6], degrees[é1, answer[17]}
pntr = "0,758539216"}
c_afp (pntr, radians);
c_rd (radians, degrees);
c_fasc (degrees, answer);
printf ("%s", answer);
45

37

CONVERT DEGREES TO RADIANS

PURPOSE
To convert decimal degrees to radians.

FUNCTION CALL
status = c_dr (degrees, rads);

INPUT PARAMETERS

degrees char array
poirter to a six byte character array
containing 3 standard ATARI floating point number
specifyirg the number of degrees to convert to radiars.

OUTPUT PARAMETERS

rads char a3rray
pointer {0 3 six byte character array to
receive the rumber of radiars equal to
‘xdegrees’ degrees, in standard ATARI
flosting point format.

status integer scalar
return status!
0 = corwersion performed successfully
-1 = out of range
DESCRIPTION

This function converts decimal degrees to radians,
‘degrees’ and ‘rads’ may be the same variable.

FUNCTIONS USED
c_fmul

EXAMPLE
char #pntr, radians[é], degreeslé], answer[171}
pntr = “45";
c_afp (pntr, degrees);
c_dr (degrees, radians);
c_fasc (radians, answer)}
printf ("%s", answer);
0.78539816

DEGREES, MINUTES, SECONDS TO DECIMAL DEGREES

PURPOSE
To convert degrees, minutes, and seconds to decimal
degrees.
FUNCTION CALL
status = c_dmsd (degrees, minutes, seconds, dd);
INPUT PARAMETERS
degrees char array
poirter to a 6 byte character array containirg
3 standard ATART floatirm poirt rwmber expressirg degrees.
mirstes char array
poirter to 3 6 byte character array containing
3 standard ATART floatirg point rumber expressirg mirwrtes,
seconds char array
poirter to 3 6 byte character array containirg
3 standard ATARI floatirg poirt rumber expressirg seconds.
QOUTPUT PARAMETERS
dd char array
poirter to a six byte character array to
receive 3 standard ATARI floating point number
that will be the decimal equivalert of
‘xdegrees’, ‘Xmirvtes’, and ‘Xseconds’.
status integer scalar
return status!
0 = argle converted successfully
-1 = out of range
DESCRIPTION ,
An angle expressed in degrees, minutes, and seconds is
converted to decimal degrees.

FUNCTIONS USED
c_fdiv
c_fadd
EXAMPLE
char deglé61], min(é1, seclé], ddegl&], *aux, outputl171;
aux = "30";
c_afp (aux, deg)}
aux = "25"}
c_afp (aux, min);
aux = "37"
c_afp (aux, sec);
c_dmsd (deg, min, sec, ddeg)}
c_fasc (ddeg, output)}
printf ("%s", output);
30.42474444

39

DECIMAL DEGREES TO DEGREES; MINUTES, AND SECONDS

PURPOSE
To convert decimal degrees to degrees, minutes and
seconds.
FUNCTION CALL
status = c_ddms (dd, degrees, minutes, seconds);
INFUT PARAMETERS
& char array
pointer to 2 6 byte character array containing
3 standard ATART flosting poird rwmber representing
the decimal degrees to be converted
OUTPUT PARAMETERS
degrees char array
pointer to & 6 byte character array to receive 3
standard ATARI flostirg poirt rumber expressirg degrees.
mirstes cher array
poirter to @ é byte character array to receive
2 standard ATARI flosting poird rumber
expressing minutes,
seconds char array
pointer to @ 6 byte character array to receiwe
8 standard ATART floating poirt rwmber
expressing seconds.

status integer scalar
return status!
0 = argle converted suctessfully
-1 = out of rarge
DESCRIPTION

An angle expressed in decimal degrees is converted to an

angle expressed in degrees, minutes, and seconds.
FUNCTIONS USED

c_int

c_fsub

c_fmul
EXAMFLE

char deglél, minlé], seclé], ddeglé], #aux;

char out1l[173], out2[171], out30173}

aux = "30,42694444"

c_afp (aux, ddeg)}

¢_ddms (ddeg, deg, min, sec)}

c_fasc (deg, outl)}

c_fasc (min, out2);

c_fasc (sec, out3);

printf ("%s, %s, %s", outl, out2, out3);

30, 25, 37

40

COMPUTE SINE OF AN ANGLE

PURPOSE
To compute the sine of an angle

FUNCTION CALL
status = c_sin (angle, sine);

INPUT PARAMETERS
amgle char array
Pointer to 3 six byte character array
containirq 2 standard ATART floating point
rumber which is the decimal argle for
which the sire is desired,

QUTPUT PARAMETERS

sire Pointer to & six byte character array to
receive the sire of ‘xarmle’ in standard
ATARI floatirg point format.

status integer scalar
return status!
0 = sire computed correctly,
-1 = out of ramge

DESCRIPTION
The sine of ‘#angle’ is computed and stored at ‘sine’, The
angle is reduced to the range 0 <= ‘angle’ <{= +pi/4 and
eight terms of the Taylor Series are used to compute the
sine to eight digits of accuracy.

FUNCTIONS USED
move (from Deep Blue C AID.CCC library)
C_fmul
c_fdiv
c_frac
c_fsub
C_fadd

EXAMPLE
char #pntr, nbr{41, sinnbrl41, answer(1713;
rad(0); /+ set degrees */
pntr = "20";
c_afp (pntr, nbr);
c_sin (nbr, sinnbr);
c_fasc (sinnbr, answer);
printf ("%s", answer)}
0.5

41

COMPUTE COSINE OF AN ANGLE
PURPOSE
To compute the cosine of an angle

FUNCTION CALL
status = c_cos (angle, cosine);

INPUT PARAMETERS

amgle char array
Pointer to 2 é byte character array containing
3 standard ATARI flostirg point number that is the
decinal angle for which the cosine is desired.

OUTPUT PARAMETERS

cosine Pointer to a3 6 byte character array to receive
the cosine of ‘xargle’ in standard ATARI
floating point format.

status integer scalar
return status!
0 = cosine computed correctly.
-1 = ot of range

DESCRIFTION
The cosine of ‘#angle’ is computed and stored at ‘cosine’s

FUNCTIONS USED
move (from Deep Blue C AIO.CCC library)
c_fmul
c_fsub
c_sin

EXAMPLE

char *pntr, nbrlé1, cosnbr(é1, answer[17]}
rad(0); /* set degrees */

pntr = "30"}

c_afp (pntr, nbr);

c_cos (nbr, cosnbr)}

c_fasc (cosnbr, answer);

printf ("%s", answer);

0.8660254

42

COMPUTE TANGENT OF AN ANGLE

PURPOSE
To compute the tangent of an angle

FUNCTION CALL
status = c_tan (angle, tangent)}

INPUT PARAMETERS

amgle char array
Poirter to a & byte character array containing
3 standard ATARI floating point rwmber that is the
decinal angle for which the tangent is desired.

OUTPUT PARAMETERS

tangent Pointer to a 6 byte character array to
receive the tarmert of ‘Xargle’ in standard
ATARI floatirg point format,

status integer scalar
return status:!
0 = targent computed correctly.
-1 = out of ramge

DESCRIPTION

The tangent of ‘*angle’ is computed and stored
‘tangent’.

FUNCTIONS USED
c_sin
c_cos
c_fdiv

EXAMPLE
char #pntr, nbr[4], tannbr[é1, answer[171}
rad(0); /+ set degrees #/
pntr = "20"}
c_afp (pntr, nbr)}
c_tan (nbr, tannbr);
c_fasc (tannbr, answer);
printf ("%s", answer);
S77325027

43

at

COMPUTE ARCTANGENT

PURPOSE
To compute the arctangent of a floating point number.
FUNCTION CALL
status = c_atan (tangent, angle);
INPUT PARAMETERS
tangent char array
pointer to 2 6 byte character array that contairs
8 standard ATARI floating point number for which the
arctangent is desired.

OUTPUT PARAMETERS
arale poirter to & six byte character array that
will contain the arctangent of ‘xtangent’
in standard ATARI floatirg point format
status integer scalar
return status!
0 = arctargent correctly computed
-1 = ot of range

DESCRIPTION
The arctangent of ‘#tangent’ is taken and stored at
‘angle’s A high quality 10 term polynomial evaluation is
used to compute the arctangent to 9 1/2 digits of
accuracy. The result will range =90 < ‘angle’ < 490 in
degrees or —pi/Z < ‘angle’ < +pi/2 in radians (depending on
the current trig mode of MATHLIB), '

FUNCTIONS USED
move (from Deep Blue C AIO.CCC library)
c_fdiv
c_cmp
c_fmul
c_fadd
c_fsub
EXAMFLE
char pntr, deg4S[é1, atan4SLé], answerl171;
rad (0); /# set mode to degrees */
pntr = "1"}
c_afp (pntr, deg4S);
c_atan (deg4S, atan45);
c_fasc (atan4S, answer);
printf ("%s", answer);
45

44

Apy ATARI Program Exchange
P.O. Box 3705

()

\ Santa Clara, CA 35055

We're interested in your experiences with
APX programs and documentation, both fa-
vorable and unfavorable. Many of our authors
are eager to improve their programs if they
know what you want. And, of course, we want
to know about any bugs that slipped by us, so
that the author can fix them. We also want to

1. Name and APX number of program.

Review Form

know whether our instructions are meeting
your needs. You are our best source for
suggesting improvements! Please help us by
taking a moment to fill in this review sheet.
Fold the sheet in thirds and seal it so that the
address on the bottom of the back becomes
the envelope front. Thank you for helping us!

Mathlib (231)

2. If you have problems using the program, please describe them here.

- 3. What do you especially like about this program?

4. What do you think the program'’s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. On a scale of 1 to 10, 1 being “poor” and 10 being “excellent”, please rate the follow-

ing aspects of this program:

Easy to use

Enjoyable
Self-instructive

Use (non-game programs)
Imaginative graphics and sound

User-oriented (e.g., menus, prompts, clear language)

7. Describe any technical errors you found in the user instructions (please ¢
page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “excellent”, how
would you rate the user instructions and why?

11. Other comments about the program or user instructions:

From

STAMP

‘ ATARI Program Exchange
A P.O. Box 3705
\ Santa Clara, CA 85055

[seal here]

