

INSTEDIT
by

Sheldon Leemon

Program and manual contents © 1981 Sheldon Leemon

Copyright notice. On receipt of this computer program and associated documentation
(the software), the author grants you a nonexclusive license to execute the enclosed
software. This software is copyrighted. You are prohibited from reproducing,
translating, or distributing this software in any unauthorized manner.

Distributed By
The ATARI Program Exchange

P.O. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above, or call toll-free:

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/727-5603

Trademarks of Atari

•

•

The following are trademarks of Atari, Inc.

ATARI®
ATARI 400n • Home Computer
ATARI soo' Home Computer
ATARI 410™ Program Recorder
ATARI 810™ Disk Drive
ATARI 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATARI 850™ Interface Module •

(

Printed in U.S.A.

•

•

•

Contents

Introduction 1

Overview 1
Required accessories 1
Contacting the author 1

Getting started 2

Loading INSTEDIT into computer memory 2

Using INSTEDIT 3

Why create custom character sets? 3
How INSTEDITworks 3
INSTEDIT's menu display screen 4

E EDIT 5

A ATARI 5
B BLANK 5
C COpy 5
I INVERT 5
M MIRROR 5
R RESTORE 6
T TWiST 6

.. t+· SHIFT 6

S SAVE 6

L LOAD 7

W WRITE 7

(1) BASiC 7
(2) DATA 9
(3) BYTE 10

Memo pad mode-OPTION key 10

Application notes 11

Troubleshooting 12

About the program 13

Appendix: The ATARI Computer's "hidden" character modes 15

Selected bibliography 20

IMPORTANTI

DUPUCATE
THIS

DISKETTE
BEFORE
USING

THIS PROGRAMI

This APX diskette is unnotched to protect the software against accidental erasure.
However, this protection also prevents a program from storing information on the
diskette. The program you've purchased involves storing information. Therefore,
before you can use the program, you must duplicate the contents of the diskette onto
a notched diskette that doesn't have a write-protect tab covering the notch.

To duplicate the diskette, call the Disk Operating System (DOS) menu and select
option J,Duplicate Disk. Youcan use this option with a single disk drive bymanually
swapping source (the APX diskette) and destination (a notched diskette) until the
duplication process is complete. Youcan also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate drives and
letting the duplication process proceed automatically. (Note. This option copies
sector by sector. Therefore, when the duplication is complete, any files previously
stored on the destination diskette will have been destroyed.)

•

•

•

•

•

Introduction

Overview
INSTEDIT is a character set editor that simultaneously displays the character you're
editing in all six character modes (the three supported by ATARI BASIC and the other
three supported only by the hardware). As you use a Joystick Controller to edit the
character in an eight-by-eight grid, you see immediately how each change affects the
character in every mode. When you want to experiment with combining characters,
merging them to create larger objects, you can use INSTEDIT's memo pad mode,
which lets you work in the lower half of the screen in anyofthe six character modes. It
can even help you create objects for use with the ATARI Computer's system of
player/missile graphics.

In addition to point-by-point character editing, INSTEDIT's menu options let you
change the whole character at once. You may change it to appear as it does in the
ROM character set, erase it, restore its original shape, invert the colors of the letter and
background, copy the form of another letter, create a mirror image, rotate it ninety
degrees at a time, and shift its position within the matrix.

Other options let you save a character set for further work later and load in a stored
character set. Once you've finished editing aset, INSTEDITwili store all or part of your
character data to diskette or cassette in the form of BASIC DATA statements, or
assembler source code using the .BYTE directive, or even an entire BASIC subroutine
for incorporating your new character set into an existinq program.

Required accessories
ATARI BASIC Language Cartridge

One ATARI Joystick Controller

• Cassette version
16K RAM
ATARI 410 Program Recorder

• Diskette version
24K RAM
ATARI 810 Disk Drive

Contacting the author
Users wishing to contact the author about INSTEDIT may write to him at:

14400 Elm Street
Oak Park, Michigan 48237

Introduction 1

Getting started •

Loading INSTEDIT into computer memory
1. Plug your Joystick Controller into the first controller jack.

2. Insert the ATARI BASIC Language Cartridge in the cartridge slot of your
computer.

3. If you have the cassette version of INSTEOIT:

(Note. If yoursystem has only 16Kof RAM and you have an ATARI850 Interface
Module, make sure the interface module is turned off. You may turn it on after
step b.)

a. Turn on your TV set.

2 Getting started

b. Turn on your computer and connect your program recorder to the computer
and to a wall outlet.

c. Slide the INSTEDIT cassette into the program recorder's cassette holder and
press REWIN D on the recorder until the tape rewinds completely. Then press
PLAY.

d. Type CLOAD on your computer and then press the RETURN key two times.
INSTEDIT will load into computer memory.

e. After the tape finishes loading, the word READY will display on your TV
screen. Type RUN and press the RETURN key.

If you have the diskette version of INSTEOIT:

a. Turn on your disk drive.

b. When the BUSY light goes out, open the disk drive door and insert the
INSTEDIT diskette with the label in the lower right-hand corner nearest to
you.

c. Turn on your computer and your TV set. The program will load into computer
memory and start automatically.

4. After a few seconds of setup time, INSTEDIT's five-part screen, described in the
next section, will display.

•

•

•

•

• Using INSTEDIT

Why create custom character sets?
Creating custom character sets can serve a number of purposes. For example, you
might want a custom character set for your computer programs for the same reason
you'd want a changeable typehead on a typewriter: you may need special math
symbols, chemistry symbols, foreign language alphabets, or a special typeface to set
the mood for a particular program.

•

On a more sophisticated level, you may want to develop special graphics characters
as a substitute for the plot-and-draw method for producing high-resolution graphics.
By positioning several characters together, you can create a high-resolution picture
as easily as you can print a character string. You can achieve the same resolution with
custom mode acharacters as you can with mode 8 drawing. The difference is that by
using specially designed characters, you avoid the high memory usage required for
mode 8, as well as the tedious and slow plotting of each point and line. You can put the
finished drawing on the screen much more quickly, achieving smooth animation in
BASIC just by printing strings of characters in succession, each representing a figure
in a different position.

Using machine-language subroutines, you can extend your work into developing
professional-quality, fast-action arcade games with full color, high-res animation.
Using custom character sets in this way introduces a new level of graphics power and
flexibility. If you're familiar with the ATARI Computer's player/missile graphics
system, you can even use INSTEDIT to design players.

How INSTEDIT works
When you press a key on your ATARI Computer's keyboard, one of 128 different
characters appears on your TV screen. The shape of each character is determined by
a collection of data stored in computer memory. INSTEDIT lets you change this data,
and thus the shape of the characters, as easily as drawing a picture.

The procedure is as follows. You use the computer's keyboard to select the character
you want to edit. A large-scale model of this character then displays in an eight-by-
eight grid. Using a joystick, you move a cursor to any of the 64 squares and modify the
character's shape. You modify by pressing the red trigger button to add or remove
color (if color is already present, pressing the button erases it; if color is absent,
pressing the button adds color). As you change the model character, these changes
appear in the samples of the character, which are displayed in each character mode.
Additional editing features let you experiment further with your characters. You can
save your finished set on diskette or cassette for future editing, or you can incorporate
it into a BASIC or assembly language program.

Using INSTEDIT 3

INSTEDIT's menu display screen
INSTEDIT's display screen is divided into five areas. It looks roughly as follows: •

(I) (2) (3)

(4)

(5)

AATARI ·'U'· SHIFT
BBLANK SELECT FROM MENU
CCOPY EEDIT
I INVERT (C) 1981 SSAVE
MMIRROR byS. LLOAD
RRESTORE Leemon WWRITE
TTWIST 777 7 777

777 777
7777777

!"#$%&'()*+,-./OI23456789:;(=)7
@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]A_
• to ... of, 1'\..I111III..- - ... + -+,-&tL.. t+

• abcdefghijklmnopqrstuvwxyz to I ••

777 7 7 777

model character in
five character modes

Figure I INSTEDIT's display screen

(1) Submenu of advanced editing features, usable with the main menu's EDIT option.

(2) Frame for the 8-x-8 character grid. Initially, this frame contains the program title.
Prompts also display in this area.

(3) Main menu of program options. Underneath the options are three sample rows of
the model character (?) in mode 0, in both normal and inverse video.

(4) Mode 0 display of the entire character set (in Internal Character Set order).

(5) The model character (?) displayed in the other five character modes, in this order:

(1) Instruction Register (IR) Mode 3
(2) IR Mode 4
(3) IR Mode 6 (BASIC GR. Mode 1)
(4) IR Mode 5
(5) IR Mode 7 (BASIC GR. Mode 2)

IR Modes 3, 4, and 5 are character modes supported by the hardware, but not by
ATARI BASIC. The appendix discusses these hardware modes, sometimes referred to
in ATARI manuals as ANTIC modes.

•

You select a menu function by pressing the key matching the first letter of the function •..•.
you want to use. The functions are as follows.

4 Using INSTEDIT

• EEDIT
When you press the letter "E", the prompt, WHICH CHARACTER TO EDIT?, displays
in the center frame. Type in your desired character, using the LOWR or CTRL key, as
appropriate, to edit a lowercase or control character. If your desired character is an
editing symbol, such as one of the arrows, you don't need to press the ESC key before
pressing the combination of keys used to carry out the edit function.

After you select a character to edit, your choice displays at the top of the main menu
and in each of the screen locations initially occupied by the question mark. In
addition, a large-scale model displays in the center frame, along with a black cursor.

Use your joystick to move the cursor within the frame to edit the character. Press the
red trigger button to change the square-to color an empty square, or erase a colored
square. Each of the sample characters reflects your changes immediately; however,
the menu and prompt lettering remain in the standard character set.

While in EDIT mode, you can also use the submenu options of ATARI, BLANK, COPY,
INVERT, MIRROR, RESTORE, and TWIST, explained below. After you finish editing a
character, you can go to another character by pressing the "E" again, or you can select
the SAVE, LOAD, or WRITE function.

The Submenu functions are as follows. Select a function by pressing the matching
letter.

• A-ATARI

B-BLANK

C-COpy

I-INVERT

M-MIRROR

Restores the character being edited to its normal (ROM set) appearance.

Clears the whole character currently being edited, giving you a clean background on
which to design a new character.

Replaces the character currently being edited with any other character. After pressing
"C", the prompt, WHICH CHARACTER TO COPY?, displays in the center frame. Type
in your desired character. The current character then becomes a duplicate of that
character.

Reverses the colors of the current pattern. All colored squares change to background
and vice versa.

Changes the character to the mirror image of its present shape. If the character is
symmetrical, no change is apparent.

Using INSTEDIT 5

R-RESTORE

T-TWIST

• t •• - SHIFT

S-SAVE

6 Using INSTEDIT

Restores the original character as it appeared the last time you pressed "E" for EDIT.
Any intermediate changes are lost.

Rotates the entire character on its axis ninety degrees clockwise each time you press
"T".

Depending on which arrow key you press, shifts the whole character up a line, down a
line, one square to the left, or one square to the right. You can repeat the function by
holding down an arrow key.

Use this function to store the complete current character set as a data file on diskette
or cassette. You can then continue editing the set later, or you can incorporate it into
another program.

When you press "S", the prompt either asks you to name the data file orto position the
cassette, depending on whether your disk drive is connected.

Diskette users enter a file name and press the RETURN key. Don't include an
extender; the program automatically adds the extender ".SET" to your file name, to
identify it as a character set data file.

Cassette users position the tape, press the PLAY and RECORD buttons on their
program recorder, and press the RETURN key on the computer keyboard.

When the program finishes storing the character set to diskette or cassette, the
message SAVE COMPLETE displays in the center frame. If an error occurs so that the
program can't complete saving your character set, the original prompt redisplays in
the center frame. Try another diskette; the one you're using might contain no free
sectors, be damaged, or contain a write-protected file of the same name as the one
you're trying to save.

To cancel a SAVE, diskette users should press the RETURN key instead of entering a
file name, and cassette users should press the ESC key instead of the RETURN key. In
each case, the message CANCEL SAVE displays in the center frame.

Although editing character sets might look like drawing, what is really occurring is
plain old data manipulation. As is true any time you work with data, saving your
revisions every so often is good practice. This protects you from calamities such as
your cat pulling out the cord from the wall outlet, thereby wiping out an afternoon's
worth of work. How often you save you work depends on how much of it you're Willing
to lose!

•

•

•

•

•

L-LOAD

W-WRITE

(1) BASIC

Use this function to load a previously saved character set from diskette or cassette.

If you have a disk drive connected, the program asks you to enter the name of the file
to be loaded and then press the RETURN key. Enter only the name you saved; the
program automatically appends the extender ".SET" to your file name. To recall the
name of a file, enter an asterisk (*) and press the RETURN key; the first ten data files in
the directorywill display at the top of the Submenu area. Display additional file names
by pressing the asterisk again.

Cassette users are asked to position the correct tape, press the PLAY button on the
program recorder, and press the RETURN key on the computer keyboard.

The message LOAD COMPLETE displays after a successful load. The original prompt
redisplays after an unsuccessful load. In the latter case, check that your diskette or
cassette containing the desired saved sets is correctly positioned. Diskette users
should avoid using any of the I/O commands (Save, Load, or Write) without first
making sure their diskette is inserted and the disk drive door is closed. Otherwise, the
drive will keep trying to carry out the program's instructions until a timeout occurs.
This activity could continue for a couple of minutes, during which time you might
think the program has crashed. If one of these situations occurs, just be patient until
the timeout occurs and then correct the problem and continue.

Diskette users can cancel this function by pressing the RETURN key without first
entering a file name. Cassette users can do so by pressing the ESC key instead of the
RETURN key .

Use this function to store a file on diskette or cassette in such a form that you can
incorporate it into an existing program. To provide flexible alternatives for fullest use
of your newly defined characters, INSTEDIT can write your character set data in any
of three formats. This function is one of INSTEDIT's more powerful features, and you
should read this section carefully to understand how to use the WRITE function.

When you press "W", a submenu displays the three WRITE options: (1) BASIC, (2)
DATA, and (3) .BYTE. Explanations of these options follow.

Use this option to write an entire BASIC subroutine to cassette or diskette that
integrates your new character set into an existing program. In the INSTEDIT program,
the character data is stored as a string. When this string is defined by the program
statements of the subroutine, loading the character set from an external storage
device isn't necessary. The program loads and runs with your new set. This method
uses a relatively large amount of memory, but it's the only way known by the author for
instantly installing a whole new character set in a cassette-based program.

Using INSTEDIT 7

8 Using INSTEDIT

The subroutine this option writes in LIST format defines and installs your new set. It
uses program lines 0 and 30000-31300; therefore, your program can't contain these A
line numbers. It also uses the variable names QQ$ to contain the string data and BASE .", ..
to hold the location of the new character set in memory; thus, make sure your program
doesn't use these names. You can merge the subroutine, in LIST format, with a
program already in memory by using the ENTER command.

When you select this option, a prompt tells you to press the RETURN key when you're
ready. Diskette users now insert the diskette to be used; cassette users position the
tape and press the PLAY and RECORD buttons on their program recorder. All users
then press the RETURN key on their computer keyboard. The program then writes the
subroutine to diskette or cassette. It might take a minute or so to write the routine
(consider how long it would take you to type in all that data!).

The message WRITE DONE displays after a completed operation. The original
prompt redisplays after an incomplete attempt. In the latter case, check your cassette
or diskette to make sure everything is set up correctly and try again.

To cancel the option, press the ESC key instead of the RETURN key after the initial
prompt.

To merge the program with one previously saved, first load the saved program into
computer memory. Next, cassette users type ENTER "C:", position the tape
containing the LISTed subroutine, and press the PLAY button on the program
recorder and the RETURN key on the computer keyboard. Diskette users type ENTER
"D:LOADSET.LST" (which is the filespec the WRITE subroutine assigns to the LIST
file), and press the RETURN key. The character set subroutine then merges with the •.
program in memory.

One final step is absolutely necessary. To order the variable table, which has to be
done to make the combined program work, you must then:

(1) LIST the combined program to diskette or cassette by typing LIST "C:" or
LIST "D:filespec", as appropriate.

(2) Type NEW after the LIST is complete.

(3) Enter the program into computer memory by typing ENTER "C:" or ENTER
"D:filespec", as appropriate.

You're now ready to SAVE or CSAVE and RUN your combined program.

A final word of caution. The pointer at memory location 756 (decimal), which tells the
computer where the character set is stored, is reset to the default value of 224 after
every GRAPHICS command. To retain the use of your new character set, this pointer
must contain the location of your set. As stated earlier, that location is stored in the
variable BASE. Therefore, after every GRAPHICS command, insert the statement
POKE 756,BASE to keep your new set in use. You may switch back to the ATARI
Computer's character set at any time in your program by inserting the statement
POKE 756,224.

•

•

4,1':1'.

(2) DATA

Use this option to save any character or group of characters to diskette or cassette in
the form of numbered BASIC DATA statements. This option is useful in cases where
you have only a couple of characters to be altered and don't want to use the memory-
intensive subroutine produced by the BASIC option. It's also suitable for occasions
when you want to distribute printed listings of your program. Because the BASIC
option stores the character data as ATASCII characters rather than as numbers, it's
very difficult to produce readable listings of programs using that subroutine. The
DATA option is also ideal for using the characters created with INSTEDIT for
player/missile graphics. Because both players and text characters are eight bits wide,
character data can be POKEd into player memory without alteration, and it will
pr.oduce a player the same shape as the character.

After selecting the DATA option, a prompt displays for entering the name of your data
file, if a disk drive is connected, under which the program will save your character set
data. The program automatically adds the extender .oAT to your file name so that
you'll recognize it as a DATA statement file. Type in your desired file name and press
the RETURN key.

Next, the program prompts all users to enter the starting line number for the
statements and then the increment between line numbers. If, for example, you enter
1000as your starting line number and 10as your increment value, the resulting file will
contain statements in the form:

1000 DATA 0,0,0,....
1010 DATA 159,46,57,...

The program then asks users to press the key of the first letter to be saved to the file
and the number of consecutive letters appearing directly after that letter that are to be
written to the file. Consecutive letters mean the order of the Internal Character Set
(corresponding to the order of the complete character set in the middle area of the
INSTEDIT display), not ATASC/I order. A listing of consecutive order is on page 55 of
your ATARI BASIC Reference Manual.

Hence, if you want to write a file with data for the letters A through Z, you first press "A"
and then "26" to specify the number of characters to be saved. To write a file
containing the whole set, you first press the SPACE BAR (which is the first character in
the Internal Character Set), and then type 128 for the number of characters.

After you enter this information, the prompt HIT RETURN WHEN READY displays.
You can now insert the proper diskette or cassette. When you press the RETURN key,
the program will write the selected characters to the file in LIST format. The message
WRITE DONE displays after the program completes the write activity. The HIT
RETURN WHEN READY prompt redisplays if the program can't complete the activity.

You can cancel the option by pressing the ESC key instead of the RETURN key.

The program stores character data in groups of 24 bytes (three characters) per
program line. You can merge the completed data file with another BASIC file by
loading the latter and then using the ENTER command.

Using INSTEDIT 9

/

(3) .BYTE

Use this option to produce data files suitable for immediate integration into assembly
language source code. The option is similar to the DATA option. Instead of writing the
data file in the form of numbered BASIC DATA statements, this option produces
numbered lines beginning with the .BYTE directive and followed by the data in
hexadecimal form. The output produced takes this form:

1000 .BYTE $00, $49, $2F, $FC, $4B, $OB, $BE, $C7

You can enter the data file directly to the Editor using the command ENTER #C: or
ENTER #D:filespec, as appropriate. Diskette files produced by this option have the
extender .BYT . The .BYTE option writes only one character's (eight bytes) worth of
data per line.

Memo pad mode-OPTION key
Press the OPTION key to enter and exit memo pad mode. This mode, like the ATARI
memo pad, lets you print any combination of characters just to see how they look.
INSTEDIT, however, doesn't limit you to graphics mode O. You can choose any of the
six character modes in which to print combinations of characters.

•

After pressing the OPTION key, a prompt tells you to type a number between aand 7.
Type in 0,1, or 2 to set up the bottom half of the screen in the BASIC graphics mode of
the corresponding number. Type in 3, 4, or5 to set the memo pad to the corresponding
IR mode. Type 6 to use the memo pad but not clear the bottom of the screen, which •
usually occurs when you choose a new mode. This last choice lets you go back and '
forth from EDIT mode to memo pad without changing the contents of the memo pad.
Type a 7 to restore the lower screen to its initial configuration.

After you choose a mode for the memo pad, the program sets the lower half of the
screen to that mode. The cursor, which is visible only in BASIC modeO and IR mode3,
is positioned in the upper right-hand corner of the pad. You can then print characters
and set up various combinations of edited characters to see their interconnection. You
can use a group of characters to form one large picture, or you can use several
characters stacked vertically to create a tall player.

To return to EDIT mode, press the OPTION key again. The lower half of the screen
remains the same while you edit characters, until you press the OPTION key again.
Once you press OPTION, you clear the lower screen by choosing a mode, or you exit
by pressing the "7", which reinitializes the screen.

•
10 Using INSTEDIT

•

•

Application notes

(1) INSTEDIT allows you to view edited characters as they appear in IR modes 3,4, and
5. Although a complete treatment of the Display List is beyond the scope of this
manual, a couple of short BASIC routines are included below that will set up a full
screen of each of the IR modes. These will let you experiment with these modes, and
to use the Script set included with INSTEDIT, which requires the use of IR Mode3. For
further information on these modes, consult the Appendix, and the Selected
Bibliography.

In each case, start with:

10 GRAPHICS 0: DL=PEEK(560)+256*PEEK 561

For IR Mode 3:

20 POKE DL+3,67:FOR 1=6 TO 23: POKE DL+1,3: NEXT I: POKE DL+24,
PEEK(560): POKE DL+25, PEEK(561): POKE DL+26, 65

For 1R Mode 4:

20 POKE DL+3, 68: FOR 1=6 TO 28: POKE DL+I, 4:NEXT I

For IR Mode 5:

20 POKE DL+3, 69: FOR 1=6 TO 16: POKE DL+I, 5: NEXT I: POKE DL+17,
PEEK(560): POKE DL+18, PEEK(561): POKE DL+19,65

(2) Although the Option 1Write routine is very good for installing your set in a BASIC
program, it takes up a fair amount of memory. Fordisk users needing to save memory,
or wanting to use several sets during a single program, a better approach is to use the
initialization routine provided by the LOADSET.LST file, substituting the Load routine
of INSTEDIT (lines 2570-2610) for the definition lines (30100-31200). Remember to
change the filespec in the OPEN statement to the name of your set data file.

(3) One way of getting more colors on a Mode 0 or Mode 8 screen is by using color
artifacts. You'll notice that if you put dots only in odd or even columns (i.e., without
putting two dots side by side), you'll generate a couple of new colors. Although you
should avoid this approach for text characters, it might be useful for graphics
characters.

(4) One promising application that seems to be a natural is to design a series of
characters depicting the face cards of a deck of playing cards.

Application notes 11

12 Troubleshooting

(5) Using the data generated by Write Option 2, it's fairly easy to plot out mode 0
characters on a Graphics mode 8 screen, so that text and map-plot graphics can
appear on the same horizontal line. As an example, use Option 2 to generate a file with
DATA statements for 26 letters. Type NEW, ENTER the data, and then type in the
following program:

10 GRAPHICS 8: DM=PEEK(560) +256 * (PEEK(561)+4: DM=PEEK(DM) +
256*PEEK (DM+1): OFF=1680

20 FOR 1=1 T025: FORJ=OT07: READA: POKE DM +OFF+J*40+1,A: NEXT
J: NEXT I

30 GOTO 30

By varying the offset constant (OFF), you can position these characters around the
screen.

(6) As mentioned earlier, you can use the data generated by Write Option 2 or 3
directly to define players for player/missile graphics. This data can be POKEd directly
into the area reserved for player data. Just remember that data from more than one
character will stack up vertically, one byte per horizontal line. Also, to save space and
time, remove any 0 data that precedes or follows the actual player shape.

Keep in mind that player/missile graphics offers three width options for each player.
Therefore, you may make use of INSTEDIT'S display of the double-wide characters of
Graphics modes 1 and 2, as well as the large center display (which itself is one
maximum-width player) to visualize the appearance of the players you design in
varying widths.

Troubleshooting

(1) The only likely problems you might encounter with INSTEDIT will be related to
Input/Output. Examples of such errors are using illegal disk file names, trying to write
to locked files, trying to read non-existent files, or trying to read an improperly
positioned tape. INSTEDIT doesn't display an error message when a LOAD or SAVE
fails, but rather redisplays the last prompt. This gives you an opportunity to check
your cassette or disk, make sure everything is set up right, and try again, or cancel the
activity.

(2) You're usually protected against accidental use of the editing keys in a way which
would interfere with the screen display. However, full editing functions are restored
when you're requested to enter information longer than one character, such as a file
name. During these times, accidental use of an editing function such as the line delete
may disrupt the display. If this occurs, complete the function in process. Then, press
the OPTION key to enter memo pad mode. Select option 7, EXIT. This will restore the
screen to its original configuration.

•

•

•

a.;"-.

(3) Although the BREAK key has been disabled, the SYSTEM RESET key still works. If
you accidentally press SYSTEM RESET, you can restart the program by typing RUN .
If you do, however, you'll lose all previous character data. To save your data, before
typing RUN type GOTO 2000. This will let you enter the SAVE routine without clearing
character data. When the "SAVE COMPLETE" message appears, you may press
SYSTEM RESET and RUN the program.

About the program

To understand how INSTEDIT works, you need to understand some of the special
hardware features of the ATARI Computer. In particular, INSTEDIT makes use of
player/missile graphics, mixed Display Lists, and character set indirection. A review
of some of the documentation discussing these topics can help you understand how
INSTEDIT works. References to some of these sources appear in the Selected
Bibliography at the end of this manual.

Although it isn't a line-by-line analysis of the program, the following general
description highlights the program's logic and organization.

The initialization routine starts at the back of the program, at line 30000. Variables are
set up for constants, the keyboard is opened as a device, and the Handler Table is
checked to see if a disk device is present (30000-30030). Next, strings are dimen-
sioned. The most important of these are C$, which will hold the new character set
data, and PM$, PO, P1 $, etc., which hold the player/missile graphics (PMG) data. Since
both PMG information and character sets must start on a 1K boundary, FILL$ is first
dimensioned to a length sufficient to waste the space between the last string data
(ADR(D$) and the next highest 1K boundary (30060).

By superimposing the PMG data area and the character set data area on the memory
area reserved for these strings, we can take advantage of the machine-language
routines in BASIC that move string data around so quickly. In addition, it lets us use
the XIO 7 and 11 commands, which move blocks of 255 bytes. These commands are
tied to the use of strings, and they account for the ability of the program to transfer
data rapidly using only BASIC routines.

After the strings are initialized, the ROM character set is copied to the area of RAM set
aside for C$ (30100), using a short machine-language routine. The BREAK key is
disabled, the mixed-mode display is created, and the initial screen graphics are drawn
(30100 to 31365). Player/missile graphics are then used to create the center frame
(player 2 and missiles grouped as player 4), the large display character (player 1), the
cursor (playerO), and the grid background (player3). The priority register is set so that
when the cursor and large characters overlap, the cursor changes color. Temporary
strings are used to transfer data to player memory, and PMG are enabled (31370-
31395). After initializing a couple of short machine-language routines to shift
characters and to draw the large center display, the program proceeds to the main
loop at line 200.

About the program 13

14 About the program

The main loop (200-290) checks the keyboard, the console switches, the joystick, and
the trigger button, each in turn. First to be checked are the WRITE (205), OPTION
(207), EDIT (210), SAVE (215), and LOAD (220).lfoneofthese keys has been pressed,
the program jumps to the appropriate subroutine. In the initial phase, if one of these
has not been pressed, the program branches to the routine that alternates the menu
colors (300-340) and then loops to 200.

If in EDIT mode, the arrow keys are checked, and if one is pressed, the Shift routine
contained on the same line is executed (235-250). ATARI (259), BLANK (255), INVERT
(260), MIRROR (254), RESTORE (270) and TWIST (252) are also one-line routines,
while COPY (265) branches to a two-line subroutine at 450, very similar to the EDIT
subroutine at 400.

Next, the joystick is checked, and if not used the program loops back to 200. If the
joystick has been used, the cursor is moved by using the horizontal position registers,
or moving the string information up, as appropriate.

The trigger button check occurs at line 230. If the button has been pressed, the
program branches to the subroutine that actually sets and erases the dots (350-390).
This routine checks the collision register to see if players 0 (the cursor) and 1 (the
large character) overlap. Next, the bit position and byte number of the character are
calculated based on the horizontal and vertical position of the cursor. Finally, 2 is
raised to the power represented by the bit place, and either added or subtracted from
the byte total, depending on the value of the collision register.

At this point, we should mention the subroutine at line 10.This routine draws the large
character, and, because it is so frequently used, it is the only subroutine that has been •
placed in front of the main loop. .

The subroutine at 800-880 sets up the display of the model characters, by POKEing
them into display data. The memo pad routine is at 925 to 995. SAVE and LOAD
routines are at 2000 and 2500 respectively, and the WRITE routines finish the
subroutine section at 3000-3910.

• Appendix

The ATARI Computer's "hidden" character modes
ATARI Computers can offer such a large number of graphics modes because they use
a separate graphics microprocessor to handle the screen display. This chip receives
instructions on how to display data from a simple program contained in RAM. If you're
using BASIC, the computer writes this program every time you give a GRAPHICS
command. But since this program is in RAM, you can alter it with the POKE command.
Several articles have appeared in magazines giving instructions on how to change this
program, called the Display List, so that many different graphics modes can appear on
the screen at the same time. A step-by-step plan for creating these mixed Display Lists
appears in Appendix B of the ATARI 400/800 Technical Users Notes (C016555),
available from ATARI Customer Service. The key step involves changing the DISPLAY
instruction. This instruction consists of a number from 2 to 15.Each time it appears, it
orders the graphics chip to display one line of a particular mode. For example,
POKEing in a 2 orders the chip to display one line of Mode 0, a 6 orders up one line of
Mode 1, a 7 one line of Mode 2, and so on. Notice how the numbers 3,4, and 5 were
skipped. These are the DISPLAY instructions for the "hidden" character modes.

When I first tried POKEing those DISPLAY instructions into a Mode 0 Display List, I
came up with some pretty funny-looking characters that I didn't understand. To find
out the purpose of these modes, which aren't supported by BASIC, I had to turn to the
technical users notes. It outlines, in fairly technical terms, some hardware features
that aren't explained by the reference material supplied with the computer.

To help in the explanation of these modes, I've listed two short programs. The first
(Listing 1) demonstrates what is referred to in the technical users notes as Instruction
Register (IR) Mode 3. In line 10, I POKE a 3 into bytes 19-26 of the Display List,
producing a screen which is half BASIC Graphics Mode 0 and half IR Mode 3. Next,
the whole character set is printed in both modes (line 30). Finally, a few adjacent
characters are printed in both modes for the purpose of comparison (lines 40-45).

When this program is run, the IR Mode 3 characters at the bottom of the screen don't
appear to be much different than the mode 0 characters at the top. On more careful
examination, however, some differences can be detected. First, there is more room
between the rows of characters in IR Mode 3. Notice that the four diagonal graphics
characters in the middleofthe screen form adiamond shape in ModeO, whereas a gap
appears between the top and bottom triangles in IR Mode 3. Also, the cursor is taller in
that mode. The second difference occurs only in the last thirty-two characters of the
IR Mode 3 set. These characters appear to be shifted, so that the top part of the
character has been cut off and moved below the bottom of the character.

According to the technical users notes, the reason for these differences is simple. By
creating a longer block for these character, and having some appear at the top of the
block, and some at the bottom, you can create a custom character set with true
descenders for lowercase letters like "y" and "p". To explain exactly how this mode
accommodates these changes, however, we must first review the method by which
the computer determines the shape of a character.

AppendiX 15

16 Appendix

When the computer wants to display screen data as a graphics character, it must look
up the shape of the character in a table stored in memory. To find this table, it looks up
its location in a pointer held in memory location 756 (decimal). Normally, this pointer
holds the number 224, because the ROM character data is stored starting at page 224
(this is equal to memory location 57344, decimal). If you're using a custom character
set, such as those created with INSTEDIT, the pointer will hold the beginning location
of that set of data in RAM. Each character is represented by 8 bytes of data. As each of
these bytes is composed of 8 binary digits (or bits), we can picture this data in the form
of an 8 x 8 grid. Figure 2 shows how the data for the upper- and lowercase letter "L" is
interpreted into the character seen on the screen. In this drawing, each horizontal row
represents one byte (the numeric value of which is given on the left). Each vertical
column represents a bit place. A darkened square represents a "1" state in the
corresponding bit location (the bit values, which equal the successive powers of 2
from 2 to the 0 (1) to 2 to the 7th (128) are shown at the top of each column). So, for
example, no squares are darkened in the top row of Figure 2a, and therefore the first
byte has a value of O. In the second through sixth rows, where bits 5 and 6 are
darkened, the byte value is 96 (64+32).

In IR Mode 3, however, these same characters are set up in a 10 x 8 grid. Two blank
scan lines are inserted below each of the first 96 characters (see Figure 3a). The last
thirty-two characters, which include the lowercase alphabet, receive special handling.
When one of these characters is set up in the grid, the first two bytes are shifted down
to the bottom two lines (see Figure 3b). This shift of the last thirty-two characters
means that they use the bottom eight lines of the grid, while the other characters use
the top eight lines, thus enabling the use of the bottom two lines for descenders. A
practical example of the use of this mode can be seen in the Script set, which is
included with INSTEDIT. Note that although the mode accommodates the characters •
with descenders very well, the tall characters such as the lowercase "b" and "d" must .
be transferred to the spot reserved for their respective control characters, so that they
won't be shifted down, and can attain their full height.

The other two hardware-supported character modes are demonstrated by the
program in Listing 2. Lines 10-20 of that program set up the screen half in IR Mode 4,
and half in IR Mode 5. Line 30 prints the full character set in each mode. Line 40
changes the background color for better visibility. The rest of the program enables the
use of the console keys to change the color and luminescence value of each register.
The SELECT key determines the register, START changes the color of that register,
and OPTION the brightness.

These two modes are four-color character modes. The only difference between these
two modes is that IR Mode5 characters are twice as high as those of IR Mode4. Unlike
BASIC modes 1 and 2, these IR Modes can mix colors within a particular character.

On looking at the standard character set in these two modes, you'll notice these
modes aren't really suitable for text characters. When used with custom-designed
graphics character sets, however, four-color graphics with the same resolution as
BASIC Graphics mode 7 can be created, and placed on the screen just by PRINTing a
string of characters.

To enable this colorful display, the computer divides each byte of character display
data into four groups of 2 bits each. These groups determine the color of the four
pixels per row. The four possible combinations produce the following colors: •

'.

•

.1a,'.

Neither bit set-displays the background color (register 4)

Right bit set- displays the color in register 0

Left bit set-displays the color in register 1

Both set-displays the color in register 2 for normal video, and the color in
register 3 for inverse video characters

Because 2 bits are needed to determine the color of each pixel, the horizontal
resolution is cut in half. Figure 4 shows how this affects letters in the existing character
set. You should be able to verify this effect by changing the color registers in the
demonstration program by using the console keys as explained above.

oREM ** LISTING 1
1 REM ** DEMO OF IR MODE 3
2 REM ** by Sheldon Leemon
3 REM **
5 REM ** SET UP MIXED-MODE SCREEN
6 REM **
10? CHR$(125):X=PEEK(560)+PEEK(561)*256+19:FOR I=0 TO 7:POKE X+I,3
20 NEXT I:POKE X+8,65:POKE X+9,PEEK(560):POKE X+10,PEEK(561)
21 REM *
25 REM * SET UP COMPARISON CHARACTERS
26 REM *
30 GOSUB 60:POSITION 2,17:GOSUB 60
40 POSITION 10,12:?CHR$(6);CHR$(7)
41 POSITION 10,13:?CHR$(7);CHR$(6);" L1";CHR$(160)
45 POSITION 10,14:?CHR$(6);CHR$(7);" ";CHR$(160);"L1"
46 POSITION 10,15:?CHR$(7);CHR$(6):POSITION 15,10:?""
50 POKE 752,1:POSITION 2,9:? CHR$(28)
51 REM *
55 GOTO 55
56 REM *
60 FOR 1=0 TO 127:? CHR$(27);CHR$(I);:NEXT I:RETURN

Appendix 17

18 Appendix

oREM ** LISTING 2
1 REM ** DEMO IF IR MODES 4 AND 5
2 REM ** by Sheldon Leemon
3 REM **
5 REM ** SET UP MIXED-MODE SCREEN
6 REM **
10? CHR$(125):X=PEEK(560)+PEEK(561)*256+3:POKE X,69
15 FOR 1=3 TO 8:POKE X+I,5:NEXT I:FOR 1=9 TO 16:POKE X+I,4:NEXT I
20 POKE X+19,65:POKE X+20,PEEK(560):POKE X+21,PEEK(561):POKE 752,1:? .",
21 REM *
25 REM * PRINT CHARACTER SETS
26 REM *
30 GOSUB 60:? :? :GOSUB 60:POSITION O,O:? CHR$(156):POSITION 1,13
31 REM *
35 REM * CHANGE BACKGROUND COLOR
36 REM *
40 FOR DELAY=1 TO 1500:NEXT DELAY:? CHR$(253):SETCOLOR 4,0,14
41 REM *
45 REM * COLOR REGISTER CHANGE ROUTINE
46 REM *
50 R=0:S=5:GOSUB 70
52 S=PEEK(53279):IF S=5 THEN R=R+1-5*(R=4):GOSUB 70
54 IF S=6 THEN C=C+H6*(C=15):SETCOLOR R,C,L:GOSUB 75
56 IF S=3 THEN L=L+2-16*(L=14):SETCOLOR R,C,L:GOSUB 80
58 FOR DELAY=1 TO 50:NEXT DELAY:GOTO 52
60 FOR 1=1 TO 154:? CHR$(27);CHR$(I);:NEXT I
65 FOR 1=156 TO 255:? CHR$(27);CHR$(I);:NEXT I:RETURN
70 M=PEEK(708+R):C=INT(M/16):L=M-16*C
71 POSITION 2,15:? "REGISTER ";R:GOSUB 75:GOSUB 80:RETURN
75 POSITION 15,15:? "COLOR ";C;" ":RETURN
80 POSITION 25,15:? "LUM. ";L;" ":RETURN

•

•

•

•

•

(a)

(a)

(a)

Figure 2

Figure 3

Figure 4

(b)

(b)

(b)

The numbers in the shaded figures show the color register displayed.

Appendix 19

Selected bibliography

The following magazine articles offer useful information about character set editing
and player/missile graphics.

"Outpost: Atari-Missile Graphics Mysteries Revealed", George Blank, Creative
Computing, January 1981, p. 176.

"Character Generation on the ATARI", Charles Brannon, COMPUTEt, February 1981,
p.76.

"Player-Missile Graphics with the ATARI PCS", Chris Crawford, COMPUTEt, January
1981, pp. 66-77.

"An Introduction to ATARI Graphics", Chris Crawford and Lane Winner, BYTE,
January 1981, pp. 18-32.

"Designing Your Own ATARI Character Sets", Gary Patchett, COMPUTEt, March
1981, p. 72.

Besides the articles mentioned above, readers with some technical background will
want to consult the ATARI 400/800 Technical Users Notes (C016555), which is
available from ATARI Customer Service. These notes give complete details con-
cerning hardware features. Appendices A and B, which deal with player/missile
graphics and mixing graphics modes, are of particular interest.

20 Selected bibliography

•

•

•

Limited Warranty on Media and Hardware Accessories. Atari, Inc. ("Atari") warrants to the original
consumer purchaser that the media on which APX Computer Programs are recorded and any
hardware accessories sold by APX shall be free from defects in material or workmanship for a
period of thirty (30) days from the date of purchase. If you discover such a defect within the 30-day
period, call APX for a return authorization number, and then return the product to APX along with
proof of purchase date. We will repair or replace the product at our option. If you ship an APX
product for in-warranty service, we suggest you package it securely with the problem indicated in
writing and insure it for value, as Atari assumes no liability for loss or damage incurred during
shipment.
This warranty shall not apply if the APX product has been damaged by accident, unreasonable

use, use with any non-ATARI products, unauthorized service, or by other causes unrelated to
defective materials or workmanship.
Any applicable implied warranties, including warranties of merchantability and fitness for a

particular purpose, are also limited to thirty (30) days from the date of purchase. Consequential or
incidental damages resulting from a breach of any applicable express or implied warranties are
hereby excluded.
The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you

specific legal rights and you may also have other rights which vary from state to state. Some states
do not allow limitations on how long an implied warranty lasts, and/or do not allow the exclusion of
incidental or consequential damages, so the above limitations and exclusions may not apply to
you.
Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been
written by people not employed by Atari. The programs we select for APX offer something of value
that we want to make available to ATARI Home Computer owners. In order to economically offer
these programs to the widest number of people, APX Computer Programs are not rigorously
tested by Atari and are sold on an "as is" basis without warranty of any kind. Any statements
concerning the capabilities or utility of APX Computer Programs are not to be construed as
express or implied warranties.
Atari shall have no liability or responsibility to the original consumer purchaser or any other

person or entity with respect to any claim, loss, liability, or damage caused or alleged to be caused
directly or indirectly by APX Computer Programs. This disclaimer includes, but is not limited to,
any interruption of services, loss of business or anticipatory profits, and/or incidental or
consequential damages resulting from the purchase, use, or operation of APX Computer
Programs.
Some states do not allow the limitation or exclusion of implied warranties or of incidental or

consequential damages, so the above limitations or exclusions concerning APX Computer
Programs may not apply to you.

•

•

•
PROGRAM

P.O. Box 3705
Santa Clara. CA 95055

Review Form

We're interested in your experiences with APX programs
and documentation, both favorable and unfavorable.
Many of our authors are eager to improve their programs
if they know what you want. And, of course, we want to
know about any bugs that slipped by us, so that the
author can fix them. We also want to know whether our

1. Name and APX number of program.

instructions are meeting your needs. You are our best
source for suggesting improvements! Please help us by
taking a moment to fill in this review sheet. Fold the sheet
in thirds and seal it so that the address on the bottom of
the back becomes the envelope front. Thank you for
helping us!

•

•

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program's weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. On a scale of 1 to 10,1 being "poor" and 10being "excellent", please rate the following aspects of this program:

___ Easy to use
___ User-oriented (e.g., menus, prompts, clear language)
___ Enjoyable
___ Self-instructive
___ Useful (non-game programs)
___ Imaginative graphics and sound

From

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing "poor" and 10 representing "excellent", how would you rate the user
instructions and why?

11. Other comments about the program or user instructions:

B
ATARI Program Exchange
P.O. Box 3705
Santa Clara, CA 95055

[seal here]

•

•

