
COLOUR CODED FOR EASY REFERENCE, FEATURING:

ST Programming

Compiled by Roland Waddilove

Compiled by Nic Outterside

ST Languages

Compiled by Mark Smiddy

ST Gem

>\ #*£Y*MR% >55S>

Compiled by Stephen Hill

ST Hardware

Compiled by Andre Willey

ST Graphics

Compiled by Rita Plukss

ST Adventures

Compiled by Brillig

Compiled by Ian Waugh

wHHB

© Database Publications 1989. First printing 1988/89

Index to The Complete Atari ST pull-out guide
•••1fi,WJ3l?HHrt:*M

Additional commands 12

Adventure topography 3
Alternatives to text 11

Basics 2

Beginning I
Collecting objects 9
Colossal Cave 3

Comedy 8
Creating atmosphere 3
Deciphering riddles 5
Glossary of adventuring terms 11
Hints and tips 5
Lateral thinking 6/10
Mazes 4

Parser and vocabulary 1I
Plot 7
Puzzles 2/5
Red herrings 6
Searching 9
Science fiction 7
Structure of an adventure I

Thrillers 7

Utilising objects 9

ST GRAPHICS

Adding primary colours 7
Avoiding ambiguity 9
Basics 2

Choosing colours 3
Colour cube 8

Colour intensity 6
Colour power 15
Colour psychology 13
Colour theory 7
Colour wheel 5

Complementary colours 6
Composition structure 10
Creating a palette 3
Creating mood 9
Drawing trees 1
Effects of colour 5

Emotional response to colour 14
Impressionism 10
Isolating the subject 10
Mastering colour 16
Mixing colours 7
Painting trees 1
Planning 14
Playingwith colour 13
RGB values 3
Shapes 12
Tonal composition 16
Tonal values 11
Using colour 4
Using perspective 11

ST HARDWARE

Disc bus 10
Disc problems 7
Disc tracks 9
Floppy discs 9
Floppy disc drive 9
Glossary of terms 4
Hard disc drives 10
Inside a 520STFM 2
Inside the Mega ST 3
Magnetic disc storage 9
MC6850 6

Mega STcomponents 4
Mega STuser ports 4
Modem port 7
Motorola MC68000 microprocessor 5
Mouse problems 7
Power problems 7
Printer problems 7
Roms and ram 1

Software problems 7
ST's internal structure 5

Support chips 1
User ports 4
User ports detail 8
Yamaha YM2149 sound generator 6
WD 1772 floppy disc controller 6

Accounts packages 8
Available databases 12

Available spreadsheets 8
Bank statements 10

Block movement 4

Calendar 4

Commercial word processors 5
Commercial databases 12

Databases 11

Defining rulers 3
Equipping yourself for thejob 1
Expenses ledger 10
Extra facilities 6

Getting set up 1
Good habits 1

Graphics output 7
Installing and application 2
K-Spread 3 9
K-Word2 5

Mail merge 6
Microjustification 6
Non-wysiwyg display 4
Notepad 4
PD word processors 3
Price list 9

Protext 5

Searching 11
Spell-check 6
Spreadsheet output 7
Sorting 11
ST Writer 3

Storing information 13
Retrieving information 14
Text Pro 5

The set-up 1
Using a database 12/13
WordPerfect 5

Word processing facilities 6
Word Up 5
Word window 4

Word Writer ST 5

Wysiwyg 6
Wysiwyg display 4
1st Word 3

1st Word Plus 5

ST LANGUAGES

AND/OR/XOR 1 1

Arrays 14
Arithmetic symbols in Basic 3
Avoiding knots 7
Conditional programming 9
Conversions 15
Data handling 14/16
Direct commands in Basic 1

Equivalence 12
First Basic program 3
First principles 1
FOR ... NEXT loops 8
Getting started in Basic 1
GOTO 7

IF... THEN 10

IMP 12

INPUT 4

Logical operators 11
Logical order 2
Loops 7
Loop structures 13
PRINT 1

Reading data 15
Real numbers and integer variables 5
Repetition 7
Strings 5/6
Simple arithmetic 3
ST Basic screen 2

Step size 8
Structuring data 16
Testing conditions 10
True or false 10

Variables 3

Variable differences 4

WHILE ... WEND 13

ST GEM

Accessing the VDI 4
Altering window size 13
Calculating window sizes 12
Clipping output 11
Creating a window 9
Definining fillpatterns 7
Defining a window 9
Displaying windows 10
Drawing polygons 7
Fillstyles 5
Gem programs 2
History of Gem I
Improving readability 6
Initialisation 2
Initialising Gem 6
Initialising the VDI 3
Installing the application 2
Limitations of wind-calc 12

Multiple windows 13
Scaling images 12
Structure of Gem 1

Tos 3

VDI attributes 5

Window control 14

Window manipulation 13
Wiping windows 11

ST PROGRAMMING

Case conversion 9

C Strings 8
Count 10

Defining your own functions 5
Defining strings in C 8
First steps in C programming 1
Floating point variables 12
Functions in C 7

Function libraries in C 5

Glitches 2

History of C 1
Input routines in C 7
Inputting floats 12
Inputting text from keyboard 7
Integer pointers 14
Local variables 6

Numeric input 9
Numeric output 11
Operators 10
Parameters 5

Peeking and poking 13
Pointers 13
Print formatting 4
Printing numbers 11
Register variables 12
Repetition 3
Returning a result 6
Reversing strings in C 8
String functions 14
String handling 9
Structure of a C program 3
Variables in C 3
Which C compiler? 1

Arranging parts 4
Connecting hardware 3
Expanders 3
Introduction to Midi 1

Making an arrangement 4
Midi channels 3

Midi software and hardware 2

Multi-timbral instruments 3
Multi-tracking 2
Music Construction Set 4

Patch change 4
Producing sound 6
Recording 1
Sequencing 5
Sequencers 2
Synthesisers I
Utilising Midi 5
What is Midi? 1

W

Beginner's guide to adventures

LEAVING aside for one moment

the keen ST games player, the
word adventure will conjure up
different things to different
people. Travelling in a foreign
country, meeting new people,
doing something out of the
ordinary or going somewhere
unusual - all reflect most peop
le's personal experience of an
adventure.

However, we all know that
adventures mean a lot more

than, say, going for a holiday in
Tunisia or having your first ever
ride on a roller-coaster.

Which of us has ever had the

chance to sail the high seas with
infamous Captain Kidd and his
bloodthirsty band? Sweated
through the swamps and steam

IMow you're on
your way . .

THE documentation accompanying the
program will normally set the scene
and give some indication of the
background to the adventure and
mission.

The game proceeds by giving, in
words, a description of the current
location - a cave or throne room, for
instance - the exits from the location,
and any objects that are plainly visible.

Normally, all descriptions and mess
ages generated by the program involve
or are addressed to the player per
sonally, like:

"The damp air of this gloomy cham
ber pervades your already-chilled
bones. You can't help but notice that a
huge cobra is slowly uncoiling its glis
tening length from around one of the
two marble pillars, its eyes fixed uner
ringly on yours''.

Play continues with you typing in a
command which is followed by the
computer's response.

Most adventures are not played in
real-time so in effect time stands still

while you are wondering what to do
next.

Movement to another location is

generally accomplished by leaving
through one of the specified exits by
typing in the appropriate command,
such as GO EAST.

The program would then respond by
displaying a description of the new
location.

Again by keyboard commands, you
can usually take and manipulate any
objects found, but not necessarily all of
them are vital to the successful comple
tion of the mission. And so the adven

ture continues, with more locations,

objects, challenges and events
unfolding.

The finest adventures are not linear

in construction - that is, you do not
have to progress and solve all the
puzzles in a single, pre-set pattern.

Instead you can take alternative
routes to your goal and unravel many
of the mysteries, within limits, in any
order you wish.

heat of the Amazon jungle in
search of the lost tribe of Lali?

Wrestled with magic spells and
powerful potions to bring to
book the evil Wizard of

Wottsitt? Or attempted to stalk
the illusive and deadly Phantom
of the Fog through the grimy,
cobbled streets of old London

town?

Participation in such exotic
adventures is beyond our reach,
and we can only experience the
excitement and danger through
the medium of books, cinema,

theatre and TV.

The main drawback to

obtaining our thrills this way Is
that we are neither the focus of

the action nor are we in control

- we may only sit back and

• . T; -I A o •

watch. The chills and spills can
only be felt remotely - the
danger threatens someone else,
not us.

But thanks to the Atari ST and
other home computers, we
thrill-starved mortals may now
experience daring do and
danger a little more realistically.
When you play an adventure
game you are put at the very
centre of events.

True, th"e comfort and protec
tion of home and hearth is still

there - and a good job, too -
but at least you can now be in
charge of the actions and fate of
the central character Instead of
sitting back helplessly and
hoping for the best.

Can you accept the challenge?

Engineers A"
office

Engineering Power

unit

Cargo
pod

J

You awake to find yourself alone on
a deserted space ship. The flight
deck is dead, apart from a sole mess
age reading: "Replace crystals
imminent". From your basic under
standing of engineering you realise
that the power crystals are lifeless

The ship is still operating on
emergency power but time is lim
ited. You must quickly find your way
to the mines on the planet below
you.

Only by replacing the crystals can
you hope for escape.

7

2

3

4

5

6

7

Take pass from flight deck.

Show pass to robot guard.

Take key from engineer's office.

Unlock fuel dump with key.

Refuel shuttle in bay.

Fly to cargo pod for satellite dish.

Connect dish to radio telescope.

8 Punch out planet coordinates.
9 Go to teleport and use coordinates.

10 Collect crystals and return.
1 1 Replace crystals in power unit.

Beginner's guide to adventures

The challenge

WITH two very important exceptions,
playing a computer adventure is
comparable to reading an exciting
novel - not that we are trying to argue
that playing an intelligent computer
game is better for you than reading a
good book.

What we wish to demonstrate in this

section is that in a couple of specific
areas, a well-written computer adven
ture can entertain, challenge and thrill
you in ways that conventional stories
can not.

Firstly, in the computer novel, you
are usually the central character and so
what is happening to the star is in
effect happening to you. Secondly, and
perhaps more importantly, you can to a
large degree control the progress and
pattern of events and so, within certain
limits, be master of your own destiny.

In a book everything happens in the
same order every time. No matter how
many times you re-read it the story,
characters and events will always
unfold in exactly the same way every
time. Not so in a computer adventure.

Most games players have their own
idea of what a computer adventure is,
so before looking closely at the wide
world of adventure programs let's
simplify matters by defining such a pro
gram as a text-based story which
allows the player to interact with it and
affect its progress by means of typed
commands.

Although in this section I will follow
the convention of referring to adven
turers as males - because male players
are in the majority - I realise there are
many female adventurers. No male
chauvinist piggery is intended.

An increasing number of adventure
programs now have a female, or permit
the choice of female or male, as the
leading character.

The puzzles

UNRESTRAINED progress is not
always possible. This is where one of
the adventurer's chief delights - the
puzzle - comes in.

Taking a very simple example, you
may find yourself in a room where one
of the exits is a locked door.

You can't open it unless you have
the correct key. But where is it? Per
haps you failed to notice that the rug in
a nearby bedroom could be picked up.
Ifyou had, you would have discovered
a shiny, brass key concealed beneath it.

Setting the scene

ADVENTURES can be set in the past,
present or future, or even outside time
itself. The environment might be
anything from a ghost town to an alien
planet, from a great underground
empire to a Hollywood mansion, from
a mythical world where magic and sor
cery prevails to a futuristic land where

perfating the air with a siell of nagk, Exits are north to a wkask
tfitcrm east to a vide, flat grassy plais, south to a rained stose hcase mi
**st to a side, flat grassy plain.

seep alcove survives in the renains of one overgrow) wall. This tease seens an
ileal slice ts cache soar loot. The only exit is north to a grassg naand. You
caa see an axe and a lanp,
feat bow? take the lanp I

science and technology are masters.
The only limit to the setting of an

adventure is the author's imagination.
All the best adventures have a consis

tent, rational theme and an objective
for you to aim at.

Your prime task might be to solve a
crime, thwart an invasion of Earth, find

a group of treasures, rescue a hostage,
become a better person or construct a
machine - but not all in the same

adventure.

The list of possibilities is endless. I
have even played an adventure where
the main aim was to collect fluff.

The parser

THE adventurer's keyboard commands
are interpreted by the program's
parser, a group of routines which break
down input and attempt to make sense
of it.

Associated with the parser is the
vocabulary, a built-in store of verbs,
nouns, adjectives and so on, against
which each word of your command is
compared.

The program can only comprehend

Time & Magik

Corruption

words contained in its vocabulary so
the larger it is, the more likely the pro
gram is to understand your commands.

Once your input has been inter
preted, the program determines
whether the command makes sense.

Take DRINK THE HOUSE - although
all the words may be recognised by the
program, the command is clearly non
sense.

If a command does make sense the

program will check whether the cir
cumstances are appropriate for it, and,
if so, what the consequences are.

For instance, if you were in a dark
dungeon and typed LIGHT THE
MATCH but didn't actually have one,
the program would more than likely
politely tell you that it would help if
you really had a match.

Assuming you did, the program
might display a message that said you
could now see the hitherto hidden

spiked pit into which you were about
to fall.

On the other hand, if there was a

serious leakage of gas you had failed to
detect in the dungeon, then the result
of lighting the match might be the pro
gram telling you that you had just been
blown to pieces.

<^\

~

„

Creating the right atmosphere

ONE of the chief pleasures of
adventuring is that of escaping into
another world, leaving behind
everyday life and being so diverted
and engrossed by the skills of the
author that you practically forget It
is only a game, and really become
absorbed in the story and role
assigned to you.

For such successful escapism the
adventure must generate a suitably
gripping atmosphere and hang
together logically, even If the logic

happens to be that of an entirely
different culture.

The main device for creating such
an atmosphere is the use of vivid
and fulsome descriptions in the
story. The more detailed and
literate the narrative, the more the

adventure engages the player's
heart and mind.

The poorer adventures offer
skimpy and banal descriptions such
as "You are in a gloomy cave. There
is a knife here. Exits are east and

down". Not terribly exciting. Such
works are the product of impoveris
hed or lazy imaginations and are
rarely worthy of your attention.

They try to compensate by
offering a greater number of loca
tions, characters and puzzles, but to
my mind such adjustments are scant
reward.

Unless a strong atmosphere is
created much of the enjoyment and
raison d'etre of an adventure is

lost.

The descriptions in Colossal Cave are some of the finest in the history of adventuredom

Colossal Cave

THE better adventures provide rich
and finely honed text, rather like a
good book. One of the best - and it so
happens, the first - adventures ever
written is the famous Colossal Cave by
Crowther and Woods. The descriptions
in this classic fantasy are some of the
finest in the history of adventuredom.

Although it was originally written
for a mainframe computer, you can
nevertheless obtain an almost identical

version for your ST. By the use of some
clever text compression techniques.
Level 9 managed to get it to run on a
home computer. Colossal Adventure,
as the adaptation is called, is currently
marketed by Rainbird as part of a
trilogy called Jewels of Darkness.

To illustrate the excellence of this

and to show the sort of standard you
should be looking for in a quality
adventure, compare the following
excerpts from Colossal Cave with the
example given above:

"You are on the edge of a
breathtaking view. Far below you is an
active volcano from which great gouts
of molten lava come surging out,
cascading back down into the depths.
The glowing rock fills the farthest
reaches of the cavern with a blood-red

glare, giving everything an eerie,
macabre appearance.

"The air is filled with flickering
sparks of ash and a heavy smell of
brimstone. The walls are hot to the

touch, and the thundering of the vol
cano drowns out all other sounds.

Embedded in the jagged roof far over
head are myriad twisted formations
composed of pure white alabaster
which scatter the murky light into
sinister apparitions upon the walls.

"To one side is a deep gorge filled
with a bizarre chaos of tortured rock

which seems to have been crafted by
the devil himself.

"An immense river of fire crashes out

from the depths of the volcano, bums
its way through the gorge, and plum
mets into a bottomless pit far off to
your left.

"To the right, an immense geyser of
blistering steam erupts continuously
from a barren island in the centre of a

sulphurous lake, which bubbles omin
ously. The far right wall is aflame with
an incandescence of its own which

lends an additional infernal splendour
to the already hellish scene. A dark,
foreboding passage leads to the
south".

Now is that a description or is that a
description? In fact. Colossal Cave is
the yardstick by which all other adven
tures should be measured.

Adventure

topography

NARRATIVE quality is not the only
element that goes to make up a good
adventure. Topography is significant
too, and must be consistent both with
the rest of the contents of the adven

ture and within itself.

For instance, if you leave a dungeon
via the North door and arrive in a

murky chamber, you should expect to
find yourself back in the dungeon if
you exit via the South door.

Similarly, if you have scrambled
down a slippery slope it does not
necessarily follow that you should be
able to go up it again without diffi
culty. Perhaps a rope tied round a
boulder at the top of the incline would
assist.

As another example, if you've cut a
hole in a sheik's tent in order to escape,
you should expect to find it still there if
you return. If it had been repaired you
would expect some explanation to be
proffered if credibility is to be main
tained.

Logic and consistency in the topo
graphy is critical if the atmosphere is to

Creating the right atmosphere

Keeping up interest

ANOTHER element of a good adven
ture is the inclusion of plenty of inter
esting incidents and events. A static
adventure, no matter how vibrant the

text or how imaginative the land, can
be a bore.

This further example from Colossal
Cave should give you some idea of
what I mean: "A little dwarf just
walked round the corner, saw you,
threw a little axe at you which missed,
cursed and ran away".

be sustained and your enjoyment is not
to be marred by illogicalities.

As there are usually a large number
of connecting locations a simple meth
odology is to draw each location as a
small uniguely labelled box with the
exits depicted as straight lines ema
nating from the appropriate points.

For instance. North would be the

top of the box. South the bottom,
Northwest the top left corner and so
on. Up and down - stairs and hill paths
are pertinent examples - can be shown
by a zigzag line at the top or bottom of
the box respectively.

By linking these boxes together as
you progress through the adventure
you will be able to retrace your steps
whenever you wish.

A maze in

ftp

MAPPING works well until you hit one
of the banes of an adventurer's life -

the maze. These used to be the staple
diet of adventures and you would be
hard put to find one that didn't have
one in some form or another. These

days they are less common, mostly
because all the variations have been

rung out of them, and because many
experienced adventurers find them too
tedious.

The basic idea was to have a series

of linked locations, every one of which
had the same description. Relying on
the position of the exits to differentiate
between one location and another

was not a lot of good either since many
were identical even though they in fact
were separate places.

Simply taking pot luck and moving
from one spot to another in the hope
that you might stumble on the exit was
a sure way to get nowhere fast
because for all you knew you could
have been going round in circles.

Colossal Cave had a maze where

each room had a small, easily-missed
variation in its description. Each was
thus uniguely and fairly described, but
you had to be on your toes to spot it.

The traditional method of cracking
mazes is to grab as many objects as
you can before entering, then drop one
in each location. Even though the loca
tion description is still the same, the
presence of a dropped object uniquely
identifies it - adventures always tell
you what is visible. It usually takes

several forays into a maze to map it as
there is a limit to how many objects
you can carry.

Some of the more fiendish adventure

writers use ploys to thwart this system
of maze solving. One had a thick mist
on the floor so anything dropped was
lost to sight. The solution was to carry
a huge fan.

Another had a small dragon that ran

* • o

A typical maze

in, gobbled up the dropped item, then
ran out again, while another adventure
would not allow you to carry anything
except a lamp. The secret was to
switch it off - in the dark, a luminous

arrow pointed to the exit.
Yet another had a character who

would move into a location you had
left, pick up the object and place it in
another room just to confuse you.

_

->

Deciphering riddles

EVEN though It might have a grip
ping plot, marvellous characters, a
sophisticated and Intelligent
command analyser and a vocab
ulary as big as the Concise Oxford
Dictionary, for most people an
adventure just wouldn't be an
adventure without one Important
Ingredient - puzzles.

They come In all forms and guises
and sometimes may be so heavily
veiled that you may not even
recognise them as puzzles at all. In
the best adventures, the problems
are an intrinsic part of the plot and
are not merely tacked on as intel
lectual appendages.

While puzzles may be Interlinked,
you should not be compelled to

solve them all In a strictly linear
fashion.

Nothing can be more frustrating
than getting stuck near the begin
ning of an adventure where the
failure to solve that specific teaser
prevents you from making any fur
ther progress.

One particular example of such a
puzzle occurs In Hollywood HIJInx
In which you start off outside a
mansion. Unless you can find a way
Into the house you're not going to
make any headway with the game.

The solution, which to be fair Is
pointed at in an obscure rhyme
supplied with the game's docu
mentation, Involves turning a
statue several times so that at each

The Babel fish

problem

PUZZLES should be fair, logical,
mentally challenging and relevant to
the development of the adventure.
They may range from the simple, such
as sliding a newspaper under a door to
catch a key falling from the lock on the
other side, to the complex and multi-
layered, such as the famous Babel fish
mind-bender in Hitch Hiker's Guide To
The Galaxy.

In this puzzle, the idea is to obtain a
small fish from a dispenser situated on
board a Vogon spacecraft. When
placed in the ear, it enables the hearer
to understand alien tongues - and in
particular, the speech of the captain of
the Vogon Destructor fleet. Failure to
translate the Vogon's speech will
cause you no end of trouble later in the
game, so possession of the fish is vital.

This may all sound pretty daft, but
anyone who has heard the radio plays,
read the books or seen the TV series
will be familiar with the unique
humour of Douglas Adams which per
vades in this superb adventure.

Pressing the dispenser's button
causes the fish to shoot across the
room at shoulder height and disappear
through a hole in the wall. The obvious
solution, therefore, seems to be to find
some way of blocking up the hole.
Careful examination of the wall reveals
a small hook above the hole,just right
for hanging a dressing gown on and
thus covering it.

Easy - except that this time the
button is pressed, the fish hits the
gown, slides down inside one of the
sleeves and drops through a drain in
the floor. Knotting the sleeves of the
dressing gown doesn't help - next
time the Babel fish slides down the
outside of the sleeve.

Covering the grate with a towel
seems to be a good idea - only now, as
the fish lies wriggling on the towel, a
tiny cleaner-robot appears, sweeps it
up and exits through a small panel at
the foot of one of the walls. It's almost

Youstartyour quest in Guild of Thieves

as if the author of the adventure is
reading your thoughts and staying one
step ahead all the time.

The panel can be obstructed by
placing a satchel in front of it - except
that when the robot crashes into the
satchel, the impact causes the fish to be
thrown into the air where it is caught
by a flying, junk-seeking robot. What
to do now? The puzzle seems to have
as many layers as an onion.

The word "junk" turns out to be a
vital clue. When a pile of junk mail -
which you may well have left behind
on Earth, believing it to be useless - is
placed on top of the satchel, next time
the sequence takes place, the mail flies
into the air along with the fish. The
aerial robot is so distracted by all the
litter flying around, it misses the fish,
which fallsstraight into the player's ear
- at lastl

Hints and tips

JUST as in the example of the "junk"
clue above, sufficient hints and infor
mation should be given within the
adventure itself to point you at the
correct solution without handing it to
you on a plate. Ideally, the puzzles
should be capable of being solved in
more than one way and the solution

turn It faces In a set direction. Get

the sequence wrong and nothing
happens. Follow It correctly and
the front door of the house auto

matically unlocks at the final turn of
the statue.

This tough nut of a puzzle had
many adventurers tearing their hair
out In frustration. What made it

worse was the gigantic maze In the
grounds of the mansion, leading
you to believe there was something
In It which would assist entrance to
the house.

There wasn't.

A really tough puzzle Is
legitimate but It should never be a
bar to progress near the opening of
the adventure.

should not rely on specialist
knowledge.

Further examples of built-in hints,
albeit in a more subtle manner, occur in
Guild of Thieves and Mordon's Quest.
In Guild, one puzzle involves opening
an opaque case by manipulating a set
of dice. The main problem is knowing
how many spots should be showing on
the top face of each die when it is
placed in a slot. Your map provides a
big clue - the arrangement of rooms
surrounding the opaque case
resembles the five-spot face of a die.

Similarly, in Mordon's Quest a pass
word is required at a certain stage.
Careful examination of the map reveals
that the location arrangement of this
particular region resembles a frog -
and that turns out to be the password.

When designing a puzzle, it is
reasonable for an adventure author to

expect a certain level of general know
ledge on your part. For instance,
turning to Guild of Thieves once again,
a room full of coloured squares has to
be crossed, each square being stepped
on in the correct sequence - one false
move means instant obliteration.

A sign over the entrance reads
WOBNIAR - fairly meaningless unless
the penny drops that the word is
actually RAINBOW spelled backwards.
So providing you remember what you
were taught at school about the order
of colours (Richard Of York Goes Back

Deciphering riddles

In Vain was how my teacher drilled it
into me, the initial letters standing for
each colour), cracking the problem
becomes easy.

Red herrings

and other objects

MANY puzzles involve the manipu
lation of an object, the normal purpose
of which may disguise the fact that it
can be used in another way. It is
therefore vital that you collect as many
items as possible as you go on your
travels.

Some objects may turn out to be of
no relevance whatsoever and some
may be capable of being used in differ
ent ways to solve more than one
puzzle. Until the adventure is
completed a wise adventurer will dis
card nothing, just in case.

One of the problems with amassing
large numbers of objects is that many
adventures set a limit to how much can

be carried at any one time. A golden
rule, therefore, is to carry only those
things that look to be of immediate
relevance - like a key, food, shovel,
lamp, and so on - and store the rest at
as central a site as possible for later
easy access.

Not all the objects turn out to be
useful. In Scott Adams' Pirate Adven
ture, the adventurer will come across a
mongoose, and knowing how such
creatures are skilled at killing snakes,
will spend much time carting it around.

Near the end of the adventure, an

uncrossable pit full of deadly snakes is
found. You naturally assume that the
mongoose will solve the problem and

the snakes kill the mongoose.
It transpires that it wasn't a mon

goose after all but a squirrel, and
another means of disposing of the
snakes has to be found. Rather a dirty
trick on the part of the author, but no
adventurer worthy of the name should
take everything at face value in these
games.

Another such crafty trick is played in
Guild of Thieves. In this a certain path
is blocked by a barred gate which
cannot be climbed or unlocked. The

answer is simply to break the bars -

they turn out to be made of
polystyrene.

In Colossal Cave a fierce dragon sits
on a rug. Ifyou attempt to fight it, the
program responds: "What, with your
bare hands?" and most people at this
point take the hint and look for other
ways of overcoming the beast.

However, for anyone foolish enough
to enter "yes" in answer to the ques
tion, the program goes on to describe
how you manage to kill it with your

The Templein Guild of Thievesposes problems of its own

bare hands, and adds that anything is
possible in an adventure.

Lateral thinking

IN many cases lateral thinking is
required to solve a particular puzzle. In
Space Quest II you are forced to climb
down a ladder leading deep into a
pitch-black shaft and thence into a lab
yrinth of tunnels.

A light is essential, but the only
source you have access to is a glowing
gem. As both hands are needed to hold
the ladder, how can you hold the gem
so that its light shines out? The answer
seems obvious - once you know it. The
gem has to be held in your teeth.

Some items vital to completing an
adventure may come in a less expected
form. For instance, a source of light is
often required to explore dark regions
but an oil lamp may not always be
readily available.

In that situation you would be well
advised to keep a sharp look out for
such things as phosphorescent moss,
glowing jewels, candles, bundles of
rags, flint and certainly matches.

In one adventure you need to have a
light source after swimming under
water - the problem is that the
matches always become wet and
useless during the swim. The solution is
to waterproof them by coating them in
candle wax before taking the plunge.

All adventurers have been baffled
and bamboozled by at least one puzzle
in their lives, but any frustration is more
than compensated for by the pleasure
and sense of achievement when a real
brain-teaser at last yields to your
probings.

Without puzzles, adventures would
be the poorer - and so would our
enjoyment.

_

_

It's all a plot

A STRONG atmosphere, attention
to detail, interesting incident,
characterisation, a comprehensive
vocabulary and a flexible command
parser are all important features
that go to make up a good adven
ture. But there is one further

element that is of fundamental

significance to an adventure's
success or failure - the plot.

As with novels, the storyline in
an adventure can be serious or

funny, real or fantastic, original or
traditional. Many people are under
the misapprehension that adven
tures are always about trolls,
goblins, wizards and assorted
Tolkien-cloned creatures.

It is true that many adventures do
indeed have a sword and sorcery
theme, but that is by no means an
accurate representation of the
world of adventures, as we shall

see.

Thrillers

CRIME, and in particular the whodun
nit stream of literature, has long been a
favourite source for adventure plots.
Deadline, from the Infocom stable, sets

you in a race against the clock to
uncover the facts behind mysterious
death of an industrialist.

As the chief of detectives in a

fictitious American town, you have
been asked by the deceased's lawyer
to investigate the death - by apparent
drug overdose - of his client. It seems
that the victim had called his lawyer
only three days earlier for the purpose
of setting in motion the necessary
procedures to change his will. His
unexpected and seeming suicide has
now prevented any alteration to the
will.

There are two especially interesting
things about Deadline. The first is that
you don't not know at the start
whether there really has been any foul
play. The second is that in addition to
snooping around for clues, you can
actually interrogate all the characters
in the adventure.

The style, timeliness, manner and
content of these interrogations
determines the responses of the
characters - and the eventual outcome
of the story. This really is interactive
fiction at its best.

Perry Mason is one of the most
famous characters in crime fiction and

in Telarium's The Case of the Mandarin

Murder, you are given the opportunity
to play the role of Perry in one of his
most difficult cases.

Laura Knapp is about to be divorced
by her famous restauranteur husband,
Victor, and engages Perry to take on
the lawsuit. Barely 12 hours later,
Victor has been murdered - with all
the evidence pointing slap-bang
straight at Laura. But she swears she is
innocent.

As Perry, you are reguired to inves
tigate the scene of the crime, use
secretary Delia Street and private eye
Paul Drake to dig up evidence and get
the background on any other suspects.
You must then bring the case to court
and conduct the defence of your client.

As well as having a juicy plot, this
adventure is unique in allowing you to
do most of the things a court-room
lawyer would do - cross-examine
witnesses, introduce evidence, consult
privately with the judge, and use every

JEFFREY
ARCHER

NOTA PENNY MORE
NOTA PENNY LESS*

^ THE COMPUTER GAME

li^'Vw

"You don't make $1,000,000 ,
Published by

Archer's adventure: Full

of shady double dealing

trick in the book to expose the true
murderer and get your client off the
hook.

Another development of the same
theme is Domark's wobbly adaption of
Jeffrey Archer's Not a Penny More,
Not a Penny Less. In this you are cast
as Stephen Bradley, the American
academic working at Magdelan
College, Oxford.

Your task is to recover the money
you lost by investing in an oil company
floated by that rogue, Harvey Metcalfe.
The plot is full of shady double dealing
and corruption as you struggle for
good to conquer villainy. It is a thriller
in the true sense of the word. Despite
poor parser and lack lustre game
development the tension is continued
to the "Big Bang" climax at the end.

Science fiction

TURNING from crime to science fiction,
Ray Bradbury's classic story Fahrenheit
451 - its name derives from the tem

perature at which books will burn -
has been turned into an adventure.

The tale is set in a future where it is

illegal to possess books, and a fireman
comes, not to save houses, but to burn

them and the books inside, where
rebels turn themselves into living
books by memorising literary works
word for word.

In this adventure you take on the
role of rebel fireman Guy Montag who
is on the run from the state and is

seeking to join the underground
resistance intent on restoring freedom
to the world. Fahrenheit 451 combines

an unusual and gripping plot with
literate prose and exciting incidents,
coupled with the uncertainty of trying
to ascertain who are your enemies and
who your friends.

One of the most original and
imaginative of science fiction adven
tures is Infocom's Suspended, in which
all your actions are carried out through
six highly individual robots. Having
awoken after many years from a state
of cryogenic suspension, you discover
that the planetary control systems are
all going to pot. You are unable to
move but must use the robots as

extensions of yourself.
Iris is a visual robot with limited

mobility while Auda has only aural
capabilities. Sensa is a mixture of

8

It's all a plot

i I H

.r*l jc-

*& <:l
t="5---:

fLjItJi^jfLlfi'l'" i.if

> leave
Ingrid Ment outside through the door and was beside a sturdy little
stone-built shop at the end of a road which meandered north across a grassy
plain, ft Multitude of tracks pitted the around, get the countryside vas alnost
uninhabited and the air was strangely silent. The loudest sound was rushing
water, far to the east. Exits led gnorth, gnortheast, east, gnorthwest and
inside through a door. Ingrid could see sone wooden shutters and a door.
<Hore>|

Gnome Ranger:A witty tale from Level 9

sensory apparatus while Waldo is an
industrious robot, built chiefly to
handle and manipulate objects.

Acting as an interfacing device
between you and a massive databank,
known as the Central Library Core, is
Whiz. However, most peculiar of all the
robots is Poet, who has powers of
touch but can only describe what he
perceives in the most florid of prose.
While what he says is always accurate,
Poet's use of the English language is
bewildering, to say the least!

Carry on laughing

AN interesting combination of science
fiction with humour is Infocom's The

Hitch Hiker's Guide To The Galaxy.
This is a completely zany and unique
adventure based on Douglas Adams'
famous radio series/book/TV series/

play/record of the same name.
The two Activision Space Quest

adventures (I and II) are similarly funny
and have the addition of animated

graphics. Space Quest II has the
unlikely scenario of you as a space jani
tor attempting to save the world from
an invasion of mutant insurance

salesmen!

Staying with humour, Level 9's
Gnome Ranger is a witty tale about the
mishaps of a bossy young gnome
called Ingrid. Equally funny is
Infocom's Wishbringer which offers a
new and delightful approach to the
traditional good and evil fantasy genre.

Rainbird's Guild of Thieves and

Jinxter successfully manage to blend a
sense of fun with a good story line and
testing problems.

Leisure Suit Larry in The Land of the
Lounge Lizards is definitely in the
risque department of humour. It is a
three dimensional animated graphic
adventure full of inuendoes and sleeze

$14.95

Adventures cover

far more than

witches, wizards

and warlocks

as you play the feature role of Larry.
Turned 40 and a real footloose and

fancy-free Del-boy character your aim
is to bum both ends of the candle for

one whole night. This involves gam
bling, drinking, dancing, girlies and
overcoming your jerkisms.

The adventure is adult, very
American but also very funny, and not
a goblin in sight!

Finally, and once again from the
illustrious Infocom, comes Stationfall
which, while being extremely funny,
novel and challenging, has perhaps the
saddest ending of any adventure. The

OffOW

\LMi<-y

IKlifBH

k \

brilliant mixture of humour, imagin
ation and pathos in a gripping plot
makes Stationfall an adventure that

will stay in your mind long after you've
finished it'

I hope you can see from this brief
overview that adventure plots cover
far more than witches, wizards and

warlocks.

Whatever your taste in stories and
themes, you can be sure that there's
every chance that somewhere,
sometime, somebody has written an
adventure that perfectly fills your per
sonal niche.

/->

^>

_

_

Utilising objects

THERE are four golden rules of
adventuring:
• Make a map.
• Examine and search

everything.
• Save your position at regular
intervals.

9 Collect all the objects you
come across.

It is with the last of this quar
tet of tenets that I shall concern

myself in the following para

THE cardinal rule is: Pick up every item
that can be carried and take it with

you. To be sure, some adventure
authors do strew a number of red her

ring objects in their world, but since
the adventurer will not know for

certain until the end of the game
whether or not an item has served any
useful purpose, the only safe course is
to gather it up. A wait and see
approach is the best advice.

Most adventures put some form of
restriction on the number, weight or
type of objects that can be transported
at any one time. If there is a knapsack,
satchel, bag or any other form of con
tainer, it is as well to store as many
objects in it as possible since the

graphs. No matter how mun
dane or how obscure an object
may appear to be at first sight, it
is usually there for a specific pur
pose. Although the particular
reason for its presence may not
be at all apparent when you first
encounter it, you can be fairly
sure that somewhere, at some

time, it will prove to be vital to
further progress and the
ultimate success of your quest.

normal run of adventures allows you to
carry more that way. Once a limit has
been reached, some things will
inevitably have to be left behind.

At this stage, it is often a good idea
to separate what appear to be crucial
items or those that have a seemingly
obvious use from the rest. The essential

objects can be carried while the surplus
can be stored together, ideally at some
easily reached, central location.

It doesn't always make sense to
leave behind an object simply because
you've already used it once - a crafty
author may have designed the adven
ture so that there is a requirement for
you to use a particular object to solve
more than one puzzle.

The contents of four pockets shown as icons

So far as is foreseeable, make sure

you can always get back to the storage
location. For instance, it's no use

dumping some of your objects on a
shore, sailing off in a boat to an island
and then, once there, chopping up
your boat to make a fire if there's no
alternative way back to your repos
itory.

Take care that nothing can get at
your deserted objects while you're
away. Thieves may be lurking nearby
so try to secure or lock up your poss
essions if you can. Be on guard against
acts of nature - in the previous
example, it's possible that the author
may have programmed the tide to
come in and wash away your belong
ings before you have a chance to re
trieve them.

Search and

discover

DESKS, cupboards, closets, sacks, vases
- anything that is capable of con
taining something else - should always
be searched since their role may be
that of concealment. In that context,
much less obvious containers such as

grandfather clocks, ovens, radios, corn
flake packets, golf bags, and the pock
ets of snooker tables should all be
scrutinised.

Book shelves are fair game, too. The
very act of taking down a book from a
library shelf may cause a secret passage
to open.

All books should be opened and
read. The two different actions may
produce differing results - opening the
book may cause something to fall out,
while reading the volume may
enlighten you as to the written con
tents.

Mirrors should be looked in, moved,
looked behind, rubbed, manipulated so
that they shine at something, and, if all
else fails, smashed. A hammer is a

handy breaking tool and it might also
be useful for banging in or removing,
or driving stakes through the hearts of
vampires.

One adventure used such an imple
ment for getting at what lay beneath a
nailed-down carpet.

Flies in the

ointment

CERTAIN objects have a limited life, so
you may have to try and make use of
them quickly.

For instance, a lit candle may have to
be brought into service before it bums
down, especially ifyou had no matches
or other means of relighting it if it was
blown out. Icicles and other frozen

matter may not last long in a warm
environment.

Some objects such as fragile vases do
not take kindly to being dropped on a
hard surface so endeavour to let them

10

Utilising objects

down gently - a cushion may be the
answer. Some artifacts may have less
than obvious uses, while others may
require additional items to be added to
them in order to construct a larger and
quite different item.

In one adventure, a hammer, some

wood, nails and canvas were all

required to make a ship. In another, an
empty wine bladder and some swamp
gas were needed to make a bomb. In
the recent Guild of Thieves, a billiard

cue, some thread, a needle and a
maggot were all prerequisites to a DIY
fishing rod complete with bait.

Cushions were mentioned earlier as

a possible device for protecting fragile
items. If the cushion happens to be of
the inflatable kind, it could also be used

to store liquids or gas, act as a

Lateral thinking

APART from dragons, the most
commonly encountered creatures in an
adventure must surely be mice. Where
there's a mouse involved, you're
almost certainly going to find an ele
phant not far away. But elephants are
not the only ones scared of mice - you
may also find an obstructive person
who will run off at the sight of a
rodent.

There could be other uses - I once

used a dead mouse to bung up a hole
in a canoe. Where there's mice, you are
also likely to find cheese, which itself
may be needed to feed another hungry
animal.

You might think that mud and dirt
could not possibly help you in an
adventure - but you'd be wrong.
Either are suitable for camouflaging
your face at night and mud in par
ticular makes a nifty poultice,
mosquito-protectant and plugger-
upper of leaks. The moral is - think
laterally and think imaginatively.

Old bones, for instance, are almost
guaranteed to be essential for feeding
to hungry, hostile canines, while gloves
can not only keep out the cold, but can
also be used to aid grasping hot,
slippery, poisonous or otherwise pain
ful objects without injury.

Finally, you may come across strange
words in an adventure - they might be
chalked on walls, etched on rocks or

scribbled in books. While you can't
take them with you in the same sense
as material objects, don't forget them.
Famous examples are PLUGH, XYZZY
and BUNYON, all magical words that,
when spoken aloud, cause you to be
transported instantly to another lo
cation - very handy for fast travelling
and for moving possessions around
more easily.

PLOVER was another magic word
that immediately transported a par
ticular object, while BLACH caused
bells to ring and an important point to
be gained when spoken at the right
time.

Whether it be a strange word,
familiar or unfamiliar object, mark well
this rule - take it with you.

springboard or even as a lifebelt.
Rope is nearly always useful, but it

may not come in the form you expect.
So look out for sheets, cummerbunds,

scarves, cords, cables, sashes, washing
lines, leashes, reins or anything else
that can be tied together to make a
functional rope. Knight Ore has you
tying many such utility items together
to form a very long rope needed to
cross an abyss.

You have to use your imagination
when considering the role of a specific
object, as the item's raison d'etre in the
game may be quite subtle, yet
provided the author has abided by the
code of adventures, always fair and
logical.

Reasonably large-sized fragments of
glass may serve as cutting tools, mag

nifying lenses or for focusing the sun's
rays to start a fire. Other than as light
sources, candles could also be useful as
a waterproof coating - hot wax
allowed to drip and cool - or for
making a surface slippery.

Newspapers make good firelighters
and possible containers as paper cones.
They can really come into their own in
that old trick of retrieving a key from
the keyhole on the far side of a locked
door by sliding the newspaper under
the door, pushing the key out with
something like a paperclip, and
withdrawing the paper when the key
falls on to it

Other ways of unlocking doors
when there is no key to be had could
be by picking the lock with a brooch
hasp, paperclip or credit card.

Old bones may provide nourishment for a wild beast

GOLDEN WHEATFIELD

vanas snimmering in trie Drigi
nortneast is the jetty, to tn
scruDj and a wood uss wsstwa
>_

Even a wheatfield may hide important artifacts

t. to tne
nd nortnwest,

_-

S*

Making yourself understood

ADVENTURES have made giant
strides since they first appeared
on home micros. It doesn't seem

that long ago when, in addition
to pitting their wits against the
often inscrutable or devious

mind of the programmer,
adventure players were also
forced to wrestle with the

game's primitive parser.
In those days, a parser was

likely to accept only two words

Restrictive

or helpful

I REMEMBER a particularly wretched
adventure where one of the very first
puzzles involved a decorated marble
pillar. Doing something to the pillar
seemed likely to open up a door to a
secret passage. It turned out that the
only acceptable response to the puzzle
was MANIPULATE SYMBOL.

Since the game hadn't even
mentioned that there was a symbol on
the pillar, let alone hinted in the docu
mentation or description that the word
MANIPULATE was going to be
required, the odds were heavily
against anyone making any progress
with that bundle of frustration.

Such programs can still find their
way to the market even now, although
thankfully they have become increas
ingly rare. Most adventures feature far
more sophisticated parsers and huge
vocabularies, the latter allowing you to
use a range of alternative words to
achieve an action and still meet with

success.

Modern day parsers allow quite
complex actions such as TAKE ALL BUT
THE GREEN BOX, OPEN THE BLUE
LOCKET, PUT IT ON THE LEDGE, EAT
THE CAKE AND GO NORTH. The use

of ALL and ITcertainly saves wear and
tear on a tired adventurer's fingers, but
ironically enough the occasions you
need to use such powerful and
complex commands turn out to be far
more infrequent than you would have
thought.

In fact, most adventurers fall back on

the old-fashioned verb-noun even

when playing a game that permits far
greater sophistication of input. Old
habits die hard!

Alternatives to text

ALL adventures, whether they be text
only, mainly text with added graphics,
or heavily graphics orientated, rely to a
greater or lesser degree on the written
word for output.

However, to make life easier some

graphics-orientated adventures have
completely done away with text as
input. Instead, they use such things as
on-screen command panels, icons or
drop-down menus.

Mirrorsoft's Deja Vu, The Uninvited
and Shadowgate are all examples of

of command at a time,

inevitably a verb followed by a
noun. And that wasn't the only
constraint. Limitations of com

puter memory also meant that
the adventure's vocabulary had
to be drastically curtailed. For
example, even if you knew the
correct action to a particular
situation was to move a vanity
mirror, you may have struggled
in vain to find the right combin

ation of words to accomplish the
action.

This was not because you
didn't know what to do but

because the program required
absolute precision. MOVE
GLASS, PUSH MIRROR, TAKE

MIRROR, PULL GLASS and many
other combinations would have

come to no avail if you didn't hit
on an exact match with the pro
gram, in this case, LIFT VANITY.

A glossary of adventuring terms

-

fHIS is not intended to be a comprehensive list, but should be sufficient to help
any novice adventurer get started. It is basically a short glossary of the most
commonly used verbs in adventures, together with some examples of any
respective and usually acceptable synonyms.

Break Smash, bend, hit, cut, destroy.
Close Shut.

Dig Excavate.

Drink Sip, taste, consume.
Drop Remove, leave, put, free, release, lower, empty.

Eat Consume, taste.
Examine Search, look, inspect.

Fill

Fire Shoot.

Get Take, grab.
Give Offer.

Go Move, run, walk, climb, ascend, descend, follow.

swim, dive, enter, leave, fly, mount.
Hit Attack, kill.

Kiss

Knock Tap.
Light Burn.

Make Build.

Open Unlock.

Point Aim.

Push Pull, slide, move, tug, lift, raise.
Read Study.

Remove

Show Display.
Sit

Stand

Talk Ask, tell.

Turn Operate, start, stop, press, switch
Walt

Wear

I Sex:FcN«le
Race :Elf

Profession:Thief
StrtMstb: 2 O i

Bexterst*:*? Gold:073<
Intellisence:05 Food:Q322

Hisd«x:lS Kevsi05
GeKs:QH

lit r*iHts:2S2l Torches:5<J
Max ; hum :2550 Ponders:01

Either seHce: 3135
Level : 32 i—L
Mas ic :Q0 -flrMeur-

5t«t»S
Goed

SKIM

OLEOTHER
Ciris-larks
§e«ih Force
So1 Eir£Nooks Snake

K iK3S

Status page from a text-only adventure

-NearoMs-

BOH 81

11

Making yourself understood

A typical screen
from a Magnetic

Scrolls text/graphic
adventure

adventures that favour the on-screen

panel. In these, a simple set of com
mands is permanently in view - all you
have to do is point at one and again at
an appropriate part of the picture to
carry it out.

Of course, this drastically cuts down
the variety of control you can exercise
but the compensation is that you never
get hung up or frustrated by the
inability to find the right words for a
particular action.

Mortville Manor, originating from
France, has a similar method. Here all
the words you need are provided in
lists by accessing drop down menus.

Communication with other charac

ters, a central feature in this particular
adventure, is accomplished in the same
way.

One list provides the names of
people with whom you may speak,
another details all the topics on which
you may engage the selected person.

A compromise between the key
board and pointer systems occurs in
Rainbird's Legend of the Sword. Here
you are given the best of all worlds.
Directional movement is achieved by
pointing at a compass while charac
ter's names and many of the usual
words needed in an adventure are

provided in pop-down menus.
However, you can opt to enter com

mands via the keyboard in the normal
way - indeed, since not all the required
vocabulary is listed in the menus
recourse to the keyboard will be
essential from time to time.

Adventurers are generally divided

into two camps over the method of
input.

On one side, those who prefer key
board commands maintain that half the

fun is in the experimentation and
finding the right words that the pro
gram will respond to and that this
method allows greater flexibility and a
far more detailed interaction between

you and the program.
The other camp maintains that key

board entry slows down progress and

is often frustrating - menus, icons and
other devices speed up play and more
than compensates for the reduction in
versatility and depth.

Whichever side you take, it is
encouraging to note that there con
tinues to be a wide range of adven
tures available catering for all tastes in
this area. So whether you're a key
board enthusiast or a pointer fan, more
than one adventure will be right up
your street.

Additional commands

Most adventures have a special set of additional commands for carrying out
tasks not necessarily specific to the plot but useful, often essential, to increased
enjoyment in playing. Examples are:

Again Repeats the last command entered.
Brief Describes location fully on first visit, briefly

thereafter.

Help May provide a clue to a puzzle.
Inventory Used to provide a list of current possessions.

Quit Ends the adventure.

Ramload Loads in a previously saved game from memory.
Ramsave Saves an unfinished game to memory - faster

but lost when computer switched off.
Restart Begins again from the beginning.
Restore Loads in a previously saved game from disc.

Save Saves an unfinished game to disc for later con
tinuation.

Score Tells you how well you are doing.
Undo Takes back the last command

Verbose Full details of each location, no matter how

many times visited.

r~\

-

Learning to draw what you see

IF you've ever sat and stared at computer-
generated pictures, been amazed by their
stunning graphics, and wished you, too,
could produce guality artwork on your ST,
this section is for you. In it we'll be showing
some of the tricks and technigues artists - of
all kinds, notjust computer ones - use when
they create their stunning masterpieces

ANYONE can learn to draw on the ST. It

really isn't all that difficult. What is difficult
is the discipline required to learn to see
what you are looking at.

Learn to see the world around you, how
things are constructed and how the whole
can be broken down into basic shapes as
well as separate parts.

Look at the relationship of the parts and
how they form the whole. Although

Tree drawing

THERE is no secret in portraying trees: It is
simply a mixture of drawing and observation
skills, combined with a knowledge of colour.

Each species is different. The structure of
the trunk plus the growth pattern and style of
the leaves varies. To understand the various

forms, study deciduous trees in winter when
the complete structure is visible.

Evergreens are a little more difficult, but if
you take the time to look at the lines of the
trunk and branches and how the cluster of

leaves form you will gain a better understand
ing of what the trees really look like.

Paintin

WHEN painting a tree the oversimplified
method where solid green shapes stand for
leaves en mass can often produce a more
satisfactory result than the overworked tree in
which the leaves are seen and painted separ
ately.

However, a compromise which varies the
texture and tone of the painted areas,

simple shapes may be a good starting
point, that is all they are. To progress fur
ther you need to look and understand
what you see, not just accept the shapes
for reality.

You must train your hand to record
what your eye sees, which is only a matter
of practice. And don't be afraid of making
mistakes or be discouraged by them, but
learn from them.

combining the use of broad washes of colour
for the density of foliage in shadow, with a
more flexible and crisp handling where small
clusters of leaves catch the light, will generally
give a more pleasing result.

by doing

STUDY the series of shapes in this section and
draw the outlines for yourself. Add the pat
terns that represent the foliage. Now draw
small sketches ranging from one guarter to
half screen in size using these same trees to try
your hand at composition.

Do your learning work in either mono
chrome or a very limited colour palette such as
various shades of grey or brown to give a
sepia effect.

This way you are tackling one problem at a
time and have less chance of becoming con
fused with what you are doing. Concentrate
on the drawing technique with some tonal
input and leave the problems of colour usage
for another time.

Only when you are content with your abil
ity to effectively portray trees in an aesthet
ically pleasing landscape composition should
you start introducing colour.

Obey
the rules
Generally, when people
paint trees they draw
what they think a trunk
looks like and then splash
some green around the
top area for the leaves,
never giving a second
thought to the under
lying structure of the
actualtree they are trying
to represent.

1
Watch

the shape
TREES don't taper in
either the trunk', the
branch, or the twig,
except - and only -
where they fork. When
ever a trunk sends off a

branch it diminishes in

diameter, and that dia
meter does not change
until it sends off another

branch or twig.

2 Above is

also below
APPRECIATE that the tree
and earth form a whole.
Just as the branches of a

tree radiate from the
trunk in all directions, its
roots are groping out
wards and downwards

into the earth seeking the
stability it requires.

You must convincingly
convey the impression of
the trees being rooted in
the soil, not merely
placed at certain spots,
capable of being moved
about like pieces on a
chess board.

3 Leaves are

different
UNDERSTAND the shape
of individual foliage and
the patterns in which it
grows. Again, each species
is different, not only in
outline shape, leaves and
growth patterns, but also
in density of colour.

Learning to draw what you see

Try this...

WITH continual practice you will achieve the
desired effect. Try the following experiments:
Draw a single bare tree or outline, as in the
accompanying drawings, then block copy this
five times. Using monochrome colours and the
same tree structure, use different covering
techniques to represent the foliage.

Paint the foliage area with varying size
brushes. Start again using the spray gun with
differing intensities and sizes. Repeat the
process, but this time with the stipple option,
varying the stipple sizes.

...and this

NOW do the same thing again, but this time
use a combination of at least three, preferably
five, different tones or colours. Notice how
you get the illusion of depth, texture and
highlights. Keep experimenting and in this
way you will not only learn what doesn't
work, but what does.

The trees must occupy the right position.

Position

IT is one thing to learn the characteristics of
trees and even become proficient at drawing
them. It is another to place them correctly into
your picture. They must occupy the right pos
ition and cover the reguired area.

One obvious fault is where strong vertical
trees are cut down to fit into horizontal pic
tures. This tends to disturb the balance, so

give some thought to the composition before
starting on a picture.

ITnaturally follows that the larger the number
of trees in a group the further away you must
be in order to bring the whole within the
scope of your vision, and the less detail will be
seen in the foliage.

As the distance increases, identification

marks will gradually disappear until the whole
is resolved into a composition offering the
attractions of contour, colour, light and shade,
and balance.

Draw the outlines for yourself

Light and shade

ANOTHER important point is proper lighting
to show the position of the sun in relation to
the viewer. As a general rule side lighting is
preferable to back or front lighting.

Light implies shadows, and these can enrich
foregrounds and give depth and mystery to
foliage. It plays an important part in directing
the eye or giving solidity to your trees.

Size is important

IT is also advisable to give some indication of
the size of the trees. This can be done by
introducing things such as fences, bushes,
hedges, rocks, people or anything that can be
easily recognised and provide an instant size
comparison.

A composition that consists of trees in a
group formation requires to be dealt with
greater care than a single tree. Each one must
be considered in its relationship to all others as
well as to itself, and each may have to be
exaggerated or repressed in order to obtain
the best effect for the whole.

Composition needs to be dealt with carefully

n

n

Freehand drawing and painting

NOW we will paint a simply pic
ture using freehand drawing,
flood fills and a small amount of

airbrush work. The layout will
take approximately 10 minutes.
The final stage involving the
details within the picture could
take anywhere from 30 to 60
minutes, depending on how
quickly you work and your eye
for colour and detail.

Palette is

important

THE most time-consuming task about
producing a picture tends to be the
creation of the palette. I know some
people who may spend a week just
setting up their palettes, so don't
expect to get yours correct in five
minutes.

Each colour you're going to use
must be right, otherwise the hues
within the picture will not be compat
ible. You will feel that something is
wrong and assume it's the drawing or
painting rather than one of the colours.

It's too late to find out after spen
ding hours on your picture that one of
the colours is wrong. By adjusting one
you can change the colour relationship
of your whole picture. The best advice I
can give you is to take time to adjust
your palette to the correct shades.

Let's g

Step 1

REMEMBERING the rules of composi
tion, balance, unity and harmony, draw
in rough outline your approximate
colour areas. Think of this as a rough
topographical map - you can see the
idea in Figure I (on the next page).

Each major colour will have its own
area, and that is what you want to put
down now.

As the lines come down the screen

they curve, giving the feeling of move
ment. I did this as it will help to convey
the impression of movement at the
water line. It will also encircle the

seagulls, which is a subtle placement of
a secondary interest area, and helps
break up what could have been a dead
area. The eye is brought to this spot
and expects to find something there.

Step 2

FILL in the areas with their predomin
ant colours - sky 677, background
trees 055, midground dark sand 554,
foreground light sand 776, foreground
wet sand 765, foreground wetter sand
554, and the sea 677. Use Figure II as a
rough guide.

Now check on the colour balance

and harmony. Step back from the
screen, sguint, and have a good look at
what you have produced. If something
seems wrong, change it now, as the
mistake will not go away, it will only
get worse as you continue.

Choosinq the colour

YOU need not have all your colours
set up before you start, but it is
advisable to have either your major
colours worked out, or at least half
the palette.

The minor colours needed for

highlights and darks may be left
until they are required.

We will be using 12 palette
colours plus white and black - and
leave two colour allotments free.

Just because 16 colours are avail

able does not necessarily mean that
you must use them all.

I could have used fewer than 14

colours, but they were there, and
certain lines or highlights looked
better in different shades, so I used

some of the excess colour space
allowed.

The colours I have chosen are

very closely related. I had in mind a
rather soft picture, therefore I
wanted analogous colours. The
two predominant ones were green
and blue. The greens had to start in
the yellow area, and I wanted to
have the darkest blue as a blue

green. These are all cool colours.
To further soften the colours I

have greyed them down to the
extent that they form a very neutral
or subdued selection. Ifyou look at
the colour numbers below you will
notice that many of them are in the
mid band approaching grey.

iuiyJKBiig3

777 White Clouds, water highlights and seagulls.
776 Off-white Cloud highlights and the light sand in the

foreground.
765 Cream The wet sand in the foreground and

highlights elsewhere.
444 Grey The distant water line and touches in the

midground bushes.
055 Agua Background trees, the water line and

bushes.

345 Blue The water line.

677 Blue The sky and the sea.
242- Green The tree tops.
050 Green The midground.
354 Green The midground bushes.
264 Green The touches on the tree trunks plus the mid-

ground hill.
550 Green The touches in the water line and mid-

ground.
554 Green The wetter sand, darker foreground and

bushes in the midground.
000 Black The sea gulls' feet and beaks, touches on

the tree trunks.

Freehand drawing and painting

Figure I: Outline your approximate colour areas Figure II: Fill in the areas with colour

BO
SEAGULLS

Two dianond

shapes on top

of each other

•rlB IMPS Inc. Add wing

V -fl i^" Add feet

B^B^BJE •» Add beak

Clean up bird

z—rr-*-'

Figure ill: Start adding the detail

Step 3

FLIP the picture upside down to check
your overall balance of line and colour
- if it still looks good go on to the next
step. If something bothers you about it,
work out what it is and adjust those
areas that need adjusting.

Sometimes the picture design layout
actually looks better when it is flipped.
By using your imagination you could
come up with a second picture using
the flipped version as a starting point.

Step 4

START defining your picture. Using a
medium size square cursor draw in the
tree tops using three greens (242, 050,
354). Work on the dividing lines to
break up the straight lines where two
colours meet.

Add some definition here and there,

using darker colours - but don't use
black - to indicate shadows and lighter
colours for the highlights and relief of
dead areas. Figure III should give you
some idea what you are trying to
achieve at this stage.

Step 5

NOW it's time to be particular about
what you're doing. Refine your dark
and light areas - highlights. Clean up
areas that look a bit rough. Break up
any colour that looks too solid by
adding a spot of another colour to it.

The sky area needs to be broken up.
Use the airbrush on a small size and
medium flow with white to indicate

clouds. Don't overdo it - be light and
easy. To highlight the clouds just skim

Figure IV:Adding a bit of interest to the foreground

over them with the airbrush using the
off-white colour.

The most difficult part of this picture
was the waterline. Play around with
this using the two blues, aqua, white
and the cream colour until you are
satisfied with what you have. Use the
smallest brush and draw these small

straight lines freehand.
The tree trunks are just a medium

thick line drawn on a curve in a

medium colour. To give them some
solidity I added short strokes of black
to bring out certain parts. Don't draw
all the trunks in black, as this is too

heavy a colour for the picture. What
you could do is set up a couple of
browns or greys in the two empty
palette spots and use them instead.

To add a bit of interest to the picture
I have included some seagulls walking

The finished picture

in the wet sand by the waterline. Don't
be put off - they are really very simple
to draw.

Take a large diamond shape cursor
and make one point over another in
white - see Figure IV: That's the body.
Using aqua or blue or grey, add the
wing by following one side of the
diamond down, starting about three
quarters from the top.

Now using black or a dark shade
draw two strokes for the legs and one
stroke for the beak: That's a sea gull!
Experiment with these simple tricks
and see how many different poses you
can come up with.

Now that you have completed one
picture, use the same palette to create
another. This time choose a different

subject matter and use the colours in a
different way.

_

j

Creating a palette

The effects

of colour

COLOUR is so common in our daily
lives that we usually don't give it more
than a passing thought. But, for an
artist it is of primary importance. Not
just the names of the various colours
and how to mix them, but how they
interact with each other. Their psy
chological effect on the viewer must
also be understood and manipulated to
achieve the final reguired result.

Daylight (white light) contains all the
colours of the spectrum: Red, orange,
yellow, green, blue, indigo and violet.
White is seen because all colours are
reflected back, whereas black absorbs
all colours and reflects none.

A red object will reflect back only
the red rays of light and will absorb the
other coloured rays of the visible spec
trum. Grey, depending on its value,
absorbs a portion and reflects a portion
of all white light rays.

Normal pigment mixing theory is
guite different from colour mixing on a
computer. One is subtractive mixing,
the other additive mixing. The additive
mixing techniques for finding that
special colour you want in your screen
picture will be discussed later. Here we
will look at colours and how they react
with each other so we may better
understand how to manipulate them
to produce the overall effect we
require.

The colour wheel

IN the normal world of art the primary
colours are red, blue and yellow. With
these three colours, plus black and
white, all other colours can be mixed.
By mixing red and yellow in equal
amounts you get orange. Mixing
yellow and blue in equal amounts
gives green, and equal amounts of blue
and red produces violet. These three
new colours are the secondary colours.

Colours such as red-orange, yellow-
green, and blue-violet, which are made
by mixing the secondary colour with
one of its primaries, are known as
tertiary colours.

Understanding colour relationships
is generally easier if the colour spec
trum is set up as a colour wheel. In this,
the three primary colours and three

More intense It's complement

Less intense A more intense

version of the
same colour,

or a near hue

Darker A lighter value
Lighter A darker value

Cooler A warmer colour

Warmer A cooler colour

How to modify colours

COLOUR WHEEL
SUBTRACT IME MIXING

PR IMARv

770

VE L LOU
tone;

SECONDARE)

ORANGE £

WARM

COLOURS
/ /

SECONDERS'
0S0

GREENIB
yl^\

COOL

\ I COLOUR!

PRIMARS
007

BLUE

PRIHftRV^B
roe-.'-
RED \

SECONDARY
303

VIOLET

1 J

r e lu

Fig.1

Thecolour wheel showing the spectrum

RED through to GREEN

7®0 600 5 10 4£0 320 B30 14B 050

The stages between the primary colour red,
its complement and secondary colour green

secondary colours have been set out.
Directly across from each colour is its
complement or opposite colour.

Each primary is complemented by a
secondary colour, never by another
primary colour. Complements are
essential in understanding how to use
colours.

The colour wheel is also divided in
half to show the warm and cool

colours. The red side of the wheel is
considered warm, while the blue side is
cool. Yellow can be both a warm or
cool colour depending on whether it is
tinged with orange (warm) or green
(cool). Likewise purple or violet can be
warm or cool depending whether it
leans towards red or blue.

Critical trio

THERE are three principle aspects or
dimensions to colour; hue, value and
intensity. Hue refers to the specific
name of the colour, for instance, red is
a hue, so is blue. Value refers to a

colour's lightness or darkness (tonal
value) and is the most important qua
lity of a colour.

If the value of a colour within your

painting is wrong, then the colour is
wrong. Every colour has a value, and
different colours can have the same
values.

Refer to the tonal pictures that were
constructed when we talked about

composition to see the relationship
between tonal value and colour, or
look at a black and white photograph
that shows something you know to be
pure blue and pure red. Both will have
the same grey tone.

By referring to the colour wheel you
will see that the lightest tones are at
the top and the darkest tones are at
the bottom of the wheel. Intensity of
colour (also known as chroma or sat
uration) refers to a colour's strength or
weakness. The purer the colour the
brighter it is.

The same hue can be of maximum

intensity (a very bright red) or of
minimum intensity (dull red). By mixing
a colour with its complement - the
colour directly opposite on the colour
wheel - we can obtain varying
degrees of intensity changes.

The picture above shows the stages
between the primary colour red to its
complement, the secondary colour
green. Both end colours are at
maximum intensity and as the intensity

Creating a palette

is brought down by including some of
its complement the colour goes
through a greying or neutralising
effect.

oiour intensity

ADDING complementary colours to
each other greys the tonal value of the
colour, but these same complements
that grey each other when mixed
together can be placed side by side or
surrounding one another, and they will
enhance each other's hue. In other

words, complements can intensify each
other's intensity.

Strange as it seems, a maximum
intensity colour isn't as intense by itself
on a white background, as when
directly next to or surrounded by its
complement. Going further, the same
colour directly against or surrounded
by an analogous colour (red next to red
orange) appears less intense.

Draw the colour circles shown for
yourself and watch how a colour
changes intensity depending on the
colour next to it. Now do the same

exercise using analogous colours -
those next to each other on the colour
wheel. While you change the colours
watch how each one interacts with the

others.

Some colours in their brightest or
most intense state are dark in value -

for instance violet, and others light in
value like yellow while others are
somewhere in between. Place yellow
and violet side by side, and they will
contrast each other not only by their
colour complement but also by their
value.

Blue and orange are not as great in
value contrast as yellow and violet,
while red and green, at full intensity,
are about the same value. These last
two colours, in equal areas and
intensities, and in juxtaposition, can
cause some rather strange visual
phenomena.

Where the edges meet, the colours
seem to oscillate or vibrate. If the area
of red is large and the area of green is

Colour circles showing intensity and interaction

,'ELLOW THROUGH TO VIOLET

•

Colour interaction usingsuper-imposed rectangles

very small, then the green appears to
be very attractive, visually appearing to
almost jump right at you. However, if a
little red is mixed with the green and a
little green mixed with the red, then
both colours calm down and seem

Any colour is influencedby the colournext to it

compatible, even harmonious. Orange
to blue and yellow to violet don't react
with quite as much agitation but
certainly do enhance each other's
intensity. This principle was used to set
up the series of superimposed rectangles
shown here.

In summary, it would be safe to
make the following observations about
intensifying, influencing or modifying a
given colour or value:

Complements intensify each other
when used side by side. Light value
colours show up best against dark
value colours and vice versa. A greyed
colour seems even greyer when a more
intense version of the same colour is

put next to it. Any colour is influenced
by the colour next to it, each tinting
the other with its own complement.

The use of colour is a personal and
emotional experience. Charts and illus
trations are for reference purposes only
and should be used as a guide, they
should not alter your preferences in
individual use of colour.

What the charts can do for you is
increase your understanding of how
various colours work with each other

and why, thereby giving you greater
control over the use of colour and thus

your final picture.

o

Creating the right colour

WE continue examining the
application of colour in com
puter graphics, with particular
reference to its use on the ST.

This stage deals with the compli
cated theme of colour mixing
using the ST's palette.

The theory of

colour generation

ITmay seem strange to anyone used to
mixing red and green with a paint
brush and obtaining brown, to read
that red and green make yellow. But
this is exactly what happens when you
mix red and green light. Coloured
paints and coloured light combine in
different ways to produce different
colours.

The screen of a colour computer
monitor only contains patterns of red,
green and blue dots or stripes. At a
distance these dots merge into a
coloured picture, but if you examine a
yellow area of the screen with a strong
magnifying glass you will not see
yellow, but a tapestry of red and green
stripes which combine to give the illu
sion of yellow.

Try the magnifying glass on different
coloured areas to see what colours are

used to produce the one you actually
perceive with your naked eye.

When mixing paints, dyes and inks,
subtractive colour mixing occurs. This is
what most of us are used to. What we

don't realise is how we actually per
ceive colour.

Colours are generated by the object
absorbing some of the light rays from
the light source that illuminates the
surface of that object, and reflecting
others. You see the reflected light.

Thus yellow absorbs blue from the
illuminating white light but reflects
green and red, which combine to reach
the eye as yellow. As shown in Figure I
cyan absorbs red light, leaving blue
and green to mix and produce cyan.

Mixing colour

So much for the theory of colour and
how it is generated. For further infor
mation consult an elementary science
text book. If you mix the "scientist's"
or additive primary colours (red, green
and blue) using paint, you will end up
with brown, but mix these same

colours with light beams and you will
get white light, displayed in Figure II.

When an artist wants green he mixes
yellow and blue paint. But mixing
yellow and blue light will give you a
white light.

The theory behind mixing colours
with light is really quite simple, all you
need to remember is that all coloured

areas on a screen are made up of a
mixture of three coloured lights. These
very small dots intermix to create a
third colour, which is determined by

SUBRACTIUE PRIMARIES
light rays

r-e-flec ted
rays

light-H5
absorbed

VELLOM ^^CVftN

^- tO«le«entary\
Xcolour lines %. 1

GREEK

ADDITIVE PRIMARIES

The colour seen is that reflected by the object

Additive mixing of coloured lights

the concentration of the three primary
colours which are are next to each
other in the one pixel.

Our eyes cannot tell these small dots
apart, we see only the pixel, and so mix
all the coloured lights together to
produce a third colour.

For a more detailed look at how
coloured dots intermix you could look
up the theories of Impressionism, Poin-
tallism or Op Art using dots of pure
colours to generate secondary and
tertiary colours, at your local library.
Red, green and blue light beams mix
additively to produce a white light,
shown in Figure II.

Where two of the primary colour
beams overlap, the additive secon
daries of yellow, magenta (bluish red),
and cyan (greenish blue) appear. Ifyou
mix a primary with a secondary colour
and the end result is white you have
found a pair of complementary colours,
because the complementary of a pri
mary will use the two coloured lights
not used in the primary colour.

For instance, the complementary of
red will be the result of green plus blue,
which is cyan. Where there is no light,

the colour produced is black.
To clarify this in your own mind

study the tables overleaf and then
generate the colours in the tables using
your art package.

Adding additive

primary colours

ADDING red to green produces
yellow, adding red to blue produces
magenta, and green plus blue gives
cyan. Figure II shows this diagram-
atically.

To further illustrate practical mixing
we shall mix a number of reds. Set red

to seven (full light) and green and blue
to zero (no light). By leaving the green
and blue at zero but decreasing the
value of red you will produce various
intensities of red until you turn off the
red completely (at zero) and produce
black (RO, GO, BO, that is no light).

Otner shades of red can be obtained

8

Creating the right colour

by leaving red at seven and adjusting
green upwards, giving a variety of red-
oranges and red-yellows, until both
red and green are at seven to produce
yellow.

Then, by having red at seven and
green at zero and bringing up the
value of blue you go through a series
of mauve reds until you reach magenta
at red seven and blue seven.

All these red shades can be further

adjusted by reducing the amount of
the red light, that is, bringing down the
value of red from seven anywhere
through to one (not zero, you must
have some red light turned on if you
want to produce a red) and bringing
up the values of blue and green.

But, red must be the predominate
hue, that is, the value of red must be

higher than the value of green or blue.
If the green is of a higher value than
the red, then the colour will change
from red to green.

The only way to really understand
this is to turn on your computer and try
the exercise for yourself. Watch what
happens to the colour with each
change of the slide. To alter the colour

R G B

7

0

0

0

7

0

0

0

7

Red

Green

Blue

The three

- primary
colours

7

7

0

7

0

7

0

7

7

Yellow ~~

Magenta
Cyan _

The three

- secondary
colours

/

0

7

0

7

0

White

Black

All lights on
All lights off

The RGB values of primary
and secondary colours

red you must either increase (add) the
value of red to make a lighter tint of
red or decrease (subtract) the cyan by
decreasing both the blue and green by
the same value to give a darker shade
of red.

If you wish to keep the red at the
same tonal value but change the hue
value you have to both increase the
red and decrease the green and blue
by the same values. This is a very
important consideration when taking a
hard copy of your screen via a colour
printer. Unless you adjust your colours
in this way you will find that they will
not remain constant.

The red family of colours includes the
pinks, oranges, mauves and warm
browns. The green family includes the
yellow-greens through to the greeny
browns. The yellows give various mus
tards and warm greys. The blues
produce mauves and blue greens.

If you have all three slide bars at the
same values anywhere along the bars
you will produce from white (R7, G7,
B7) through six shades of grey to black
(RO, GO, BO).

Making a

colour cube

A GOOD learning exercise is to
produce a colour cube. This would help
you to understand how to find the
exact colour you require in your pic
ture. Figure III shows one of the six
sides needed for the cube.

Square one - the Red Green square
in Figure III - uses all the combinations
of red and green light. Note that the

darker reds and greens tend towards
the warm browns.

Square two would be Magenta
Cyan which adds a blue value of seven
to each square. The other four faces of
the cube are: R0-R7, B0-B7 Red Blue.

Adding seven green to each of these
squares produces Yellow Cyan. G0-G7,
B0-B7 Green Blue.

Adding seven red to each sguare
gives Magenta Yellow. To make a real
cube you must flip the cube horizon
tally when you add the colour that is
missing, that is, when going RO to R7. I
have produced all combinations in the
Red Green sguare.

If your art package only generates
16 colours you could set up your
sguare on a four by four grid and use a
step of two in the higher values. Any
one working with a colour printer or
colour digitiser using RGB filters would
find this exercise invaluable.

After having worked through these
exercises you should no longer be con
fused about how to produce any given
colour. If ever in doubt either add the

complementary or subtract the com
plementary colour from the general
colour you want.

This should give you a fair indication
of where to look for your chosen
colour. It is generally not understood
that colour mixing, in any medium, is
an intellectual activity. It reguires a
great deal of thought and experience
to mix colours correctly.

Red Green Blue

Red

Green

Blue

Red

Yellow

Magenta

Yellow

Green

Cyan

Magenta
Cyan
Blue

The effects of mixing primary colours

SQUARE 1 RED GREEH

R
7

6

5

4

3

2

1

6

. '.

——

•

^^•;..;|i,«if:;;^€S:;

8 1 2 4 5 6 7
G

A colour cube created with Quantum Paint

The structure of a picture

Creating the

right mood

WE will move on now to look at a very
complex topic - pictorial composition.
It is impossible to cover everything, so
we'll restrict our discussion to the more

relevant theoretical points and follow
these up with the practical impli
cations.

Pictorial composition even on a com
puter screen involves combining the

various parts of a picture to produce a
harmonious whole. This may sound
simple, but is in fact, very difficult to do.
Composition is an intangible thing and
there are no definite rules, only general
principles and practices.

Ifyou study texts on art and painting
you will find that they are full of
compositional designs. These include
the triangle, circle, square and ellipse.
There is no need to use these math

ematical methods, simply follow the
dictates of your own conscious and
subconscious.

That is, try something, and if it looks
right, leave it alone; if it looks wrong.

delete it or move it around, or try
something else.

This is very easy to do with the ST,
especially if you save your work before
making drastic changes. Better still,
save it every time you produce
something pleasing before you con
tinue - and then find that you have
ruined a very good effect.

Certain techniques when combined
with composition arouse definite feel
ings, and these can be used to help set
the mood of a picture.

But they have to be used in conjunc
tion with the other elements and prin
ciples, otherwise the effect will fail and

Adding an object- the centre of attention - can reduce or enlarge the size of a landscape

LINE drawings are capable of various
interpretations and can be very
ambiguous unless we are given some
visual clues about them. The figure
below shows three drawings. The first
is capable of various interpretations.
With some extra visual information the

second is still ambiguous, but this time
it conveys a concave or convex
remainder of a pyramid. By adding
more detailed information to the third

we have now created an unambiguous

spatial effect of a room.
The pictures above look at another

area of ambiguity - the relative size of
the components. When we look at
something we want to be able to pin
down just what we are looking at. If
there is not enough information within
the picture our minds become con
fused and we generally end up uncon
vinced about what we see.

The pictures show the same scene
twice, but by the use of recognisable

\

mesa

Met i|H„„
... : .. • • :.' ' .::••••••

EiffiMayf.-xaare.-, ,,•:-:--. - ffiafflj

Adding detail to a line drawing eliminates ambiguity

size comparisons - a duck and a boat -
the scale of the entire picture has been
changed and we feel more comfortable
with the landscape.

The scale is set by the inclusion of
the sizing figures, not by the landscape.
In the duck picture the landscape has
been reduced, while in the boat picture
it has been enlarged.

The only difference between the
two is the point of interest - the duck
and the boat.

10

The structure of a picture

you will end up with a chaotic mess.
Long horizontal lines suggest repose
and guiet, and may be used to advan
tage in peaceful landscapes. Violently
broken lines or areas of broken strong
colour give the feeling of unrest and
emotional turmoil.

This is what is so great about Van
Gogh's work. In contrast. El Greco
used vertically elongated lines and
masses to establish aspiring religious
motifs.

Curving rhythmic lines, such as in
much Eastern art produce a feeling of
gentle movement.

These are just a few of the tech
niques used to evoke feelings about a

Isolating the subject

A PASSIVE type of composition is
produced when the subject is isolated
and you tend to wonder what is hap
pening beyond the frame of the pic
ture. By giving only part of the picture
on the screen and leaving the rest up
to the imagination, you are invited to
become involved with it.

Rembrandt was a master at this

technigue, and his subjects were
precisely placed in an empty space. He
used colour for serenity or mood, and
composition for mystery, leaving you
wondering what the subject was
involved with.

The classical painters of the East
were also great masters of the art of
using empty space. They actually left

picture. Once you have decided on the
mood you reguire for your picture try
to capture it on your STs screen.

There are two extremes in the theory
of structural composition - isolating or
detail composition and central
composition. There are, however,
many intermediate stages and today
any of these midpoints are acceptable.

Central and symmetrical composi
tion underlines ceremonial, sacred
themes. These are very strongly based
on precise mathematically formulated
compositions using the circle, square
and so on, and this method of labori

ous picture construction was used by
all the great painters in their day.

blank areas, and at times these have
more significance than the painted or
drawn areas. The tension and expec
tation that they created with just a few
lines have never been reproduced in
Western art.

Another excellent example is da
Vinci's Mona Lisa. Ever wondered

what she is smiling at? It's not just the
mystery of the smile itself, but what she
is looking at that gives the picture its
power. Some of this mystery was
achieved by giving the corners of the
mouth the feeling of movement. This
was done by leaving a vagueness
around the corners and allowing your
eye to complete it. This technique was
to become the basis of Impressionism.

Good composition structure

JUST as with a painting, randomly
scattered lines on your ST screen may
be meaningless, but once properly
composed can take on a significant
meaning.

Areas of tone give feeling and depth.
Line, tone and colour as well as texture

- created through colour - must be
harmoniously combined if a picture is
to be a success.

The general principles within a good
composition encompass unity, balance,
emphasis and subordination and
rhythm. Unity means that all parts of
the picture relate to each other to form
a complete unit. Everything seems to
belong where it is, nothing looks
superficial or redundant and nothing is
lacking.

Balance means that the picture is in
equilibrium and that each part is
adjusted so that it receives its correct
share of attention. Every segment has a
certain attractive force which acts

upon the eye, and in proportion to its
power to attract, it also detracts from
every other part.

If the interest is divided among
several sections, if certain lines, tones
or colours seem to be too insistent, the

composition lacks balance. Your ST's
colour palette is an ideal tool for exper
imenting with this imbalance.

Balance is continually changing as
you work - as soon as you add
something, or change a colour. It is by
continually working to achieve balance
that a whole picture is produced rather
than a series of separate items
combined in one picture.

Emphasis and subordination means
creating a centre of interest and
allowing nothing to detract from it. The
eye must be led to this area and there
should be no confusion or major dis
traction to upset this balance.

Rhythm refers to the regular recur
rence of similar features, trees, hills,
clouds and so on. This is generally
pleasing, as related forms tend to be
more satisfying than unrelated ones.

All rules, are there to be broken.
Most of the leaders of modern art

movements from Impressionism
onwards set out to challenge the
established rules within art. But before

you can break rules successfully you
must first know and understand them.

Rules were broken only superficially,
and if you study their paintings with
care you will find that they do in fact
have unity, balance, emphasis and
rhythm. They actually concentrated on
these areas at the expense of the
subject. This is most evident in abstract
art, which is really one of the hardest of

Impressionism

AN entirely new concept of compo
sition arose with Impressionism. Where
previously the weight and stress had
always been confined within the edges
of the picture, now there arose a dis
harmony between the incident in the
picture and its borders.

When looking at these pictures you
feel the urge to pull the subject back
into position, and since you are unable
to do so your interest is excited and
held.

Have a close look at some of

Monet's work, especially the waterlily
or garden series. It is the same sen
sation as that given by a piece of music
ending on a discord. The passive
observer is forced to engage himself
with the work of art, thereby
becoming an important part of the
work itself.

Every picture conveys a feeling
which is often aroused by the composi
tion itself, and it is the mystery within it
that is the universal trick of all pictures
that move us.

The problem is how to achieve this
feeling in a drawing on our ST using
Degas or Neochrome art packages. It is
not easy, and in many cases is
stumbled on by accident. The artist's
real genius lies in recognising when
this accident occurs, and in not trying
to alter or improve it. The real art seems
to be in omission and in implication,
rather than making a complete
statement.

styles to duplicate on a computer
screen.

The only way to improve your
compositional work is by practise. Do
small quick sketches using a medium to
large brush to lay out your line and
mass areas. Step back from the moni
tor, half close your eyes and have a
good look at the screen. If it looks har
monious then you have a good starting
point to work from. But if it looks like a
jumbled mess, start again.

Many artists turn the canvas upside
down. Any composition faults, especi
ally balance and unity problems,
become obvious, because you are
looking at line, colour and tone, not
the subject matter. You can do the
same thing by flipping your screen
upside down.

Another important consideration of
any picture is how the objects are
placed in relation to the dimensions of
the screen. There are boring composi
tions and interesting ones. The latter
contain contrasting shapes - large and
small, long and short, round and poin
ted, straight and curved, full and
empty, thick and thin and so on.

But don't use them all in the same

picture, just one pair. Contrasts help
create interest, but they must also suit
the dimensions of the total area used.

-

w

Tone and composition

When composing a picture some
thought should be given to the
background, midground and
foreground. In a landscape the
background Is the sky, the mid-
ground mountains, hills, trees,
and the foreground is the more
detailed parts of the picture at
the bottom. By planning this
before you start drawing on
your ST screen you'll have a
better chance of producing a
pleasing arrangement.

FIGURE I shows two pictures of the
same subject matter drawn on the ST
using Degas Elite. The first has been
divided into three equal proportions
for sky, landscape and foreground. The
addition of a barn and a tree placed off
centre add balance and interest. But

because the complete picture area has
been divided into nearly equal parts, it
tends to form a monotonous design.

The second illustration contains the

same pictorial elements as the first, but
this time the frame has been divided

into unequal parts and this division
represents a more interesting arrange
ment.

Another area of practical compo

Figure I: Varying balance

Figure III: Rearranging shapes

sition is that of perspective, the techni
que of making your drawn or painted
objects on screen look as if they logi
cally belong in the space they occupy
in the picture. Figure II demonstrates
the five basic rules of perspective:

• Things look larger and more detailed
when close, smaller and less detailed as
they get farther away.

• Close objects are brighter than those
in the distance. Distant objects look
vague and hazy.

9 An object will overlap what is
behind it.

• As objects get farther away they
appear higher up as well as smaller.

• Parallel lines appear to get closer to
each other as they get farther away.
They appear to touch the horizon.

Once you understand these simple
rules you can use them effectively in
your computer artwork, or you may
prefer to ignore them all together if
they get in the way of what you want
to do. Purposely ignoring rules is a dif
ferent thing to not realising that there
are rules that can be broken or

ignored.
Abstract art, as well as other modern

styles, are quite difficult to do in a con
vincing manner, because to con
sciously break rules you must first
understand them. Attempts to bluff
your way through without under
standing the basics generally produces
a confusing or chaotic picture with a
very immature style.

Another important area that must be
considered is tonal values in compo
sition. Using your art package set up
eight shades - tones - of grey from
white to black, and three linear shapes
- square, triangle and circle like in
Figure III.

To draw a square use Degas Elite's
Frame option. For the triangle use the
Line option and draw one side plus half
of the base then block copy this and
flip it. Line it up with the other half of
the shape and you have a symmetrical
triangle. For the circle use the Circle
option.

Divide your screen into quarters and
place each of the shapes into a number
of pleasing compositions to produce
four drawings. When you are satisfied
with them look at the outlines the

shapes produce. There should be a
pleasing feeling to the overall positive
shape and some balance with the
negative space - the background.

Check this by filling in the
background with your darkest tone,
black. Then undo this by pressing the
Undo key and fill in the objects with
black. If both versions look acceptable
then your placement of negative and
positive space is good.

If something feels wrong, change
the position or size of one of the
objects until you are satisfied with the
composition, but save your drawings
before you do this checking exercise.

Reload your line drawings and

Figure II:Rules of perspective

Figure IV: Mixing tone
11

12

Tone and composition

colour in each one using a combination
of the tonal values indicated at the side

of the screen as in Figure IV. Use
varying combinations for each picture
and notice the difference as you apply
the colour.

Now choose one of your tonal pic
tures and recolour it with different

tonal values. As you do this you should
become aware of how the picture
changes by using different tones. Ifyou
have a dark background and light fore
ground with midtones for the mid-
ground, swap the tonal values for both
the background and foreground. There
should be a marked difference in the

feeling of the picture.
Understanding the use of tonal

values only comes with practise. As
you do these exercises think about the
differences in each picture. Experiment
further by changing the grey tones to
blues, reds or greens. Pay particular
attention to how this affects your
picture.

When you have achieved a feeling
that you like try to match the tonal
value to a colour and paint in the vari
ous shapes. Do this by block copying
your tonal picture and colouring in the
copy. Then compare the two. If you
have correctly matched tone and
colour both pictures should have the
same underlying feeling.

SO far we have put together some pic
ture designs using rectangles, triangles
and circles. Take one of those designs
and interpret it in different ways like in
Figure V This is not a standard one you
would normally expect when asked to
place three objects within a picture.

The circle is represented by the curve
at the left border rather than drawing
it complete. Althougn you can't see a
circle, you still know it to be one. The
triangle is standard, but the rectangle,
although complete, is placed in a
strange position - front centre. By
keeping the shapes within the picture
constant but by changing where the
lines overlap, different and distinct pic
tures emerge.

The picture breaks some of the rules
of good composition by having the
rectangle - the centre of interest - at
centre front. This is a tricky place to
have this - dictated here by the colour
of the rectangle, not its shape or place
ment - but as you look at the picture
you will see that this combination does
work. Although the composition is
structurally wrong, the picture is in bal
ance. This has been achieved by using
very strong tonal values to provide the
balance.

When you play around with ideas
and sketches always try the unusual
and unexpected; don't just accept the
first interpretation you see in a sketch -
be imaginative and daring. If it doesn't
work you have lost nothing, but if it
does you may have the beginnings of a
masterpiece. Be on the lookout for
accidents that sometimes occur when

LOOK for both positive and negative
shapes when you plan your picture.
They are everywhere you look. Learn
to see and recognise them and incor
porate them into your design layouts.
There are shapes even where you do
not recognise shapes existing. Nega
tive ones are some of the most inter

esting to manipulate. For an effective
picture you must be aware of all the
space at your disposal and treat each
of these spaces with the respect it
deserves.

Compare the shapes in Figure VI
created using Degas Elite. In the
landscape the sky is the negative
shape, the land the positive one.
Both are as important as each other.
Next time you look at one of Turner's
later landscapes and marvel at the
sky, think about which part of the
picture is more important and you

Figure VI: Moving shapes around

you are just playing around, they could
be developed into very acceptable pic
tures.

Most people when they draw or
paint, produce the most obvious inter
pretation, but there are many ways of
seeing the same thing. Take an apple.
You not only have many different
shapes and sizes, but also colours. Then
there is the treatment of the colouring

Figure V:Alerting focal points

will come to understand about the

reversal of space.
The second example is an exercise

in space. Draw a similar screen and
play around with different colour
combinations for all parts of the pic
ture, the background as well as the
shapes themselves. Recognise how
the picture changes depending on
which shapes are emphasised by the
use of colour.

Try different combinations - start
off with tonal variations then become

more adventurous and experiment.
But, always make your shapes and
colours compatible with each other.
You do this by first deciding what
mood you want to portray with your
picture.

By adjusting your shapes, colours
and textures to match you'll keep the
whole thing in harmony.

itself. Don't just use the Fill option and
leave it at that - use shade and texture.

Add a stalk, leaves, blemishes,

highlights. Or represent the apple by
just the core or peel. How about one
with a bite taken out of it, or a grub
crawling out? Think of the various
things done to apples and when
drawing one incorporate some of
those ideas.

^

_

_

Creating the right response

UNDERSTANDINGthe emotional play
of the colours in the ST's wide ranging
palette allows you to be in full control
of your picture. The emotionality of
colour is a fascinating subject.

As a discrete user of colour, the

knowledge of how to elicit certain
mood responses to your computer
artwork can add another dimension, or

extra emotional depth, to your picture.
It's very easy to create any mood you
desire which means you can actually
influence the viewer to respond exactly
the way you want him to respond.

Red is considered to be the psy
chologically dominant warm colour,
while blue is the dominant cool colour.

Red symbolises fire and heat, while
blue is the symbol of water, ice, sky
and coolness. Therefore the more red a

colour contains the warmer the colour

will be and the more blue it contains

the cooler it will be.

Yellow is considered a warming
colour when added to others. It also

lightens colours as it is the lightest tone
on the wheel we looked at earlier.

When using yellow - a mixture of
red and green - as a warming colour

Use lightened colours
from the cool side of

the colour wheel to

create a feeling of
cool softness.

Combine these with

thin horizontal lines

IT is well known that certain

colours can create specific
moods and bring forth emo
tional responses. This know
ledge is used to advantage in
designing hospital rooms, indus
trial work areas and especially
in advertising. In the last area
colour Is used to entice you to
buy a product by portraying a
mood or symbol that you can
identify and associate yourself
with.

it's generally thought of as sunlight,
and some yellows on the warm side of
the wheel (more red than green), do
actually appear to enhance the tem
perature of the colour to which it is
added. A cool yellow (more green than
red) will lighten a cool colour rather
than warm it.

In creating a landscape on your ST
with say, Degas Elite, morning colours
are usually cooler than midday and
afternoon ones. Late afternoon colours

are not only warmer than at any other
time of the day, but also can be used to
create very dramatic effects.

Early morning colours are cool, crisp
and fresh. The sky is more pastel and
cooler than the afternoon or evening
sky. Each season also has its predomin
ant colours.

BY painting the same scene, but
altering your colour selection by
changing the on-screen palette, you
can produce quite different pictures.
This is done by the emotional play of
the colours themselves.

Ifyou have not tried doing this type
of colour substitution in your pictures,
have a go at it - it's such an easy task
on a micro like the ST. You could be

very surprised by some of the results,
especially when you start incor
porating such things as symbolistic and
traditional motifs into your work, and
combining that with unexpected use of
colour.

Expressionistic artwork relies very
heavily on colour. Here it plays a
dominant role, all other aspects of the
picture being subordinate to it. Line,
composition, rhythm, realism and so on
all play a secondary and minor role to
the visual and emotional response to
colour itself.

Using the information in the panel as
a base on which to build you could
portray the following types of feeling
by selecting your art package's colour
palette accordingly. Take a look at the

Bright, pure
complementary
colours are loud and
unsettling. Try
combining these with
strong diagonal lines
or short, sharp
contrasts

13

14

Creating the right response

accompanying pictures produced on
the ST using Degas Elite, and then try
creating your own examples.

When using these guidelines the
colours do not have to be pure ones.
Yellow itself is a warm sunlit colour, red

conveys the feeling of heat, danger or
excitement.

The heat of the red can be brought
to a climatic crescendo by adding a
small amount of yellow - raise the
green slider on the palette selector and
make sure that there is no blue present.
Only a small amount of yellow is
required for this - too much and you
end up with an orange which does not
have the same intensity of either the
red or the yellow.

By greying a colour you introduce a
quieter mood and, depending on the
degree, somberness and discomfort.
The aim of the exercise is for you to
take a dominant colour and slightly
change it by adding another colour to
it.

Instead of mixing complementary
colours to grey them, try mixing them
optically by placing them side by side.
Your eye will try to combine them to
produce a grey, but because it cannot
do so each colour will appear to
become brighter and more vibrant.

The effect will be even more

pronounced as the colours move
optically from coloured neutrals - un
equal complementaries, one weaker
than the other - to grey com
plementaries egual in intensity.

Your eye becomes stimulated as any
two colours approach a com
plementary relationship and this can be
used to advantage to produce all types
of effects, including very dramatic ones.

For maximum contrast, com

plementary colours should be in the
same temperature scale, therefore use
warm colours to warm and cool

colours to cool. For instance, a warm

blue - blue with some red in it -

against a warm orange, or a cool
yellow - yellow with a green tinge -
opposite a Cool pink, violet and so on.

Planning

your picture

YOU should first choose your subject
matter, then select the mood you want
to portray. This in turn will help you to
select the correct palette from the ST's
512 available colours. Skilful use of

colour will add subtlety, interest and
life to your picture and is very often the
difference between success and failure.

After choosing your subject, colour
and mood, test your palette selection
in a series of mini sketches. In each one

make minor adjustments to see if you
can get a better combination of factors
to finally produce the exact result you
planned on.

When you've got it right you'll
know. There will be no doubt about it,
as all the factors within the picture will
convey the same meaning. There will
be a feeling of completeness to it

Yellow Sunlight, warmth, happiness, comfort
Orange Light, warmth, happiness, comfort

Red Fire, heat, excitement, danger
Red/purple Darkness, intrigue, night, uneasiness

Purple Darkness, intrigue, night
Blue/purple Darkness, uneasiness, intrigue, night

Blue Water, ice, coolness, calmness, moonlight, sky, distance
Blue/green Water, cool serenity, airiness, distance

Green Foliage, nature, calming, quietness, coolness
Yellow/green Sunlight, richness, happiness

Purples and blues produce a mystical or mysterious mood

regardless of whether it is a soft senti
mental piece or a strong emotional
statement. All will be in harmony.

Last, but

not least

A FINAL point that should be
mentioned is that the border colour of
your picture around the edge of the
monitor screen is very important.

When your work is viewed it is seen
together with the border or
background colour. This should be
treated as an integral part of your
picture.

As you have already seen, colours
change depending on what is next to
them or surrounds them. Your picture is
surrounded by the border colour and
as such it has a significant influence on
the picture as a whole.

To test this, take one of your pictures
in which you have not used the
background colour within the picture
itself and change the border colour.
Look at the effect it has on the picture.

n

o

^

_

Practical applications

NOW we'll move on to take a brief

look at the practical applications of the
emotional aspect of colour and
composition. To illustrate how you can
use colour to say exactly what you
want here are two pictures created
using Degas Elite on the ST, one a tra
ditional landscape, the other an
expressionistic graphical design con
cept. These should be sufficient to
demonstrate the power of colour and
how to use it to maximum effect.

Figure I is a green landscape. This is a
quiet, sombre type of picture showing
a pond at sunset. The main emphasis is
on subtle warmth and restfulness.

There is nothing here to really grab
your attention, except the pond itself.
It asks nothing of the viewer and is
quite comfortable to look at. This is
what is called a rather nondescript
picture.

Figure II is identical to the first
except for the colours. Here the domin
ant green has been changed to white
and a few of the highlight colours have
also been altered to blend in with the

overall picture. There is a strong sense
of coldness. The sombreness has gone
and so has the warmth.

This is a more dramatic scene than

the original picture yet the only dif
ference is the dominant colour. The

overall colour is stronger, colder and
therefore you react differently to the

picture. Study both examples until you
can work out why you react the way
you do.

Try creating your own versions of
the two pictures. When you complete
the first, save it, then change the
dominant colour to give an entirely dif
ferent picture. You may have to spend
some time planning your landscape
and how you are going to use your
colours before actually painting it, but
the planning stages are important and
if carried out correctly, usually reward
you with a better result.

within

LOOK at Figures III and IV for a while
and work out what they say to you.
Investigate your feelings towards them
and then try to analyse why you react
in that particular way.

The two pictures are drawn in four-
colour medium resolution. This restric

tion can be put to good use as it forces
you to think about what you want to
say with the picture. Having planned
this, decide on the colour combin

ations.

The difference between the two is

quite extraordinary. Not only is the
surface changed, but also the whole
emotive and symbolic meaning has
been altered by changing the palette.
That is the power of colour.

The two figures are centrally placed,
which gives a strong, forceful composi

tion. The squareness and solidity of the
figures has been balanced with the
roundness of circles in both corners
(the symbolism here is also very inter
esting).

The strong vertical has been tem
pered by subtle diagonals to keep the
picture within its frame and soften the
impact. The placement and shape of
the arms, hands and head-dress have
also been very carefully thought out.
Each part taken separately would look
invalid but taken as a whole the pic
ture is not only complete, but makes a
very strong statement.

Figure IVis nearly identical to Figure
III, apart from changing the colours
and the mouth of one of the figures.
This small detail helps to change the
feeling of the whole picture, and it is
more in keeping with the colour
changes made.

Purple signifies mystery or a mystical
statement. This colour has been used

to convey a religious feel to the picture,
although the subject matter itself is not
one that could be readily identified
with our normal preconception of a
religious motif.

The red picture conveys a primitive
and somewhat threatening feeling,
while the same picture in a purple tone
- mainly conveyed by the background
border - removes the threatening
primitive feeling and replaces it with
one of strangeness or uneasiness,
especially when viewed together with
the contradictions within the subject
matter itself.

The contradictions within the picture
play a major role in the overall effect.
Round and sguare, hard and soft, not

Figure I:A landscape showing subtle warmth Figure II:Dramatic scene created by changing the palette

Figure III: A four-colour medium resolution picture Figure IV: Thesame picture as before using different colours
15

16

Practical applications

only in lines but also colour usage and
the subject matter itself. The two pic
tures show that the number of colours
available are nowhere near as impor
tant as understanding how to use
them to say what you want.

colour

COLOUR is a servant to but a few. If

mastered it becomes an excellent tool.

It will do for you what nothing else
can. It will communicate directly with
the viewer's subconscious and he or

she will react to and with your work.
The reaction may not always be

pleasant, because you are asking the
viewer to do something which he may
not want to do, be it think about your
work, or even think about himself,

which most people generally find
uncomfortable or even threatening.

Colour should not be treated lightly.
Near enough is not good enough.
There is always the one and only right
colour for everything. The object
should not dictate what colour it

should be, but the emotive feeling of
the object is of primary importance.

The examples used here should
make clear the feelings produced by
colour. The topic itself is not an easy
one to talk about effectively, the eye
and heart (spirit) can understand better
than the ear. In other words one pic
ture is usually worth a thousand
words.

Tonal

F*

HAVING drawn the main picture,
think of the best possible composition.
Some areas have to be subdued, others

highlighted. Use the Degas Smear and
Stipple with a small brush to break up
any hard background ridges where
two colours meet. This softens the

colour contours as it merges them.
At this stage some areas of your pic

ture will require highlighting and
others will require darkening.
Strengthen some of your line work so
everything does not merge into the
background or sit on the same visual
plane. Some strokes can be in the
background, others in the midground
or foreground.

Where the strokes seem to be placed
within your picture will depend on the
strength of the line itself. This strength
is made up of the colour, thickness and
density. By varying these factors you
will vary the strength of the line and
change the composition of your whole
picture.

Now decide on the shape of your
final picture. Just because the ST moni
tor screen is rectangular doesn't mean
that your picture has to be the same
shape. Try a variety of different things
including reversing (flipping) the entire
screen. Play around with different
types of borders - you'll be amazed
what a difference it makes.

pray it a

WE will now try some practical exer
cises in using stippling. Our preference
in art packages for the STis Degas Elite,
but it doesn't matter which one you
use as long as it has a definable stipple
- or spray - option.

Before you start your painting on
screen you have to make three
decisions:

• Decide on your subject matter.
• Decide on the overall effect or feel

ing you want to convey.
• Set up your palette accordingly.

Now select the Stipple option. Using
your background colour and a medium
brush size, spray around the screen.
Allow a heavier concentration in some

areas, becoming lighter in others. The
stipple density can be regulated by the
speed of the mouse. The faster you
move it the lighter it is. Move very
slowly if you want a heavy flow.

Now change to a slightly lighter
colour and smaller brush. Place some

accents here and there to give areas of
interest and relieve the monotony of
overall colour. For variety, try using a

long thin vertical brush with the
stipple. The horizontal thin line brush
gives a wonderful feel when por
traying water.

Try a brush at an angle and then go
over the same area lightly with the
angle reversed. This technique is good
for rocks and cliff faces. Try a combin
ation of different brushes - you can get
some interesting effects this way.

After covering half to three quarters
of the screen with a variety of colours
and brush lines, change to the Draw
option to accentuate areas and bring
life to your picture. The size brush you
use will depend on what you are
doing.

In the pictures below a large brush
indicates broad leaves and a medium

brush size with a strong colour is used
for the flowers. With the trees a small

brush with stronger colour contrast
delineates the tree trunks thereby
bringing them out of the background.
How you use colour is a very personal
thing, so just try a few different com
binations until you have something
that feels right.

These three pictures
show how to combine

the spray and brush to
produce effective results

_

Exploring the 520 STFM

The ST exposed

IF you take a look at the photograph
on the next two pages you will see a
somewhat stripped down machine,
with some of the larger components
removed for clarity.

Normally the keyboard obscures the
lower half of the main printed circuit
board, and the empty space in the
bottom right hand corner Q allows for
the mouse and joystick connectors. The
internal disc drive sits over the top
right section of the board, and the
separate power supply board sits
neatly over the remaining upper left
hand area.

Every ST micro is based around a
Motorola 68000 microprocessor Q This
chip - the so-called central processor
unit, or CPU for short - is the very
heart of the system, and all the other
chips on the board are at its command.

On its own the 68000 is incapable of
doing anything more than running raw
machine code programs, so the ST also
contains a full 192k of rom memory,
split over six32k chips EJ

Rom and ram

ROM is short for read only memory,
and it contains permanently stored
machine code routines to allow the ST

to provide you with all the things you
take for granted like Gem, disc hand
ling, printer support and so on.

Rom memory cannot be altered or
re-written in any way, so the only way
to update a machine from the older set
of chips - shown here - to the new
1.09 variety is to physically remove
them and fit a new set. More modern

versions of the 520 or 1040 will prob
ably contain just two somewhat larger
rom chips.

Similarly, a computer is quite useless
without somewhere to store the pro
grams you wish to run. This area of
memory is known as random access
memory, or ram, and unlike rom
memory it doesn't hold any predefined
contents.

What goes in here is entirely up to

THE ST range of computers has
undergone a number of design
modifications and alterations over

the two years since it was launched.
In this section we take you on a
guided tour of the components
inside one of the most commonly
available variations - the 520STFM

you, and any program - be it a game or
a business package - which you decide
to load will be stored here until you
either erase it - normally with the Quit
menu option - or turn the power off.

The 520 and 1040 machines are

both based on the same main circuit

board, and they each use the same
kind of ram chips. Known as 256k
drams, each stores 256,000 single bits
of information. As eight bits make up
one byte, it follows that eight of these
256 kilobit chips will give you 256
kilobytes of storage space.

You will note from the photograph
that in fact 16 ram chips are installed in
the 520 Q giving a total of two sets of
256k - 512k in all. A 1040, which con
tains twice as much ram, will have a full
set of 32 chips - filling up the currently
empty top row of sockets 9

Support chips

LET'S take a look at some of the

support chips without which the ST
would not be able to function:

Q Glue: The first of the four Atari
custom chips, this is basically
responsible for keeping everything else
running smoothly. It generates the
master clock signal of 8Mhz which
keeps the 68000 running.

It handles all requests for access to
memory and input/output by the vari
ous other chips, letting them each have
access in turn, and creates the empty

video signals which will later be filled
in to create your TV picture. In fact, it
really can be thought of as "glueing"
the whole system together.

Q MMU - Memory management
unit: Another Atari custom chip with
two main functions. It is used to keep
track of up to 4Mb of memory.
Whenever another chip - such as the
processor, DMA or Shifter - wants to
read or write a location in memory, the
MMU makes sure the correct address

in ram is available to it.

EI DMA- Direct memory access: The
third Atari custom chip allows incom
ing data from floppy or hard discs to be
placed straight into memory without
passing through the processor.

It must make sure that access to the

ram memory is available when the
external device requires it, and in some
cases - notably the high speed data
from a hard disc - it must also

temporarily stop the processor from
talking to memory to avoid a conflict.

El Shifter: The final Atari custom chip,
this is responsible for creating the mul
ticolour displays the ST is famous for.

The MMU supplies bytes of screen
data, along with colour palette infor
mation, and the Shifter turns them into
RGB - red/green/blue - video signals
ready for your monitor. It works in
colour only and its operation is muted
for monochrome mode.

DB MK 68901 MFP - Multi-function
peripheral: Responsible for keeping
the 68000 in touch with the outside

J-Jir i !• i; u MUi n
nwMTr"11°I'll J nn

|x |c Jv Ib 5n Im J< |> J' J~» 1
I I f I I I ! I I' I 1

Exploring the 520 STFM

world. It provides the system timers,
interrupts and control functions.

Among its many tasks are RS232
input and output, screen/processor
synchronisation, printer-busy checking
and the monochrome monitor detect

facility.

DQ WD 1772 FDC - Floppy disc con
troller: A chip responsible for reading
and writing data to either the A or B
floppy disc drives. It is capable of
moving the drive head in or out and
then performing the relevant input or
output operation - the data being
passed via the DMA chip into ram
memory.

D^

[E and [E MC 6850 ACIA - Asyn
chronous communication interface

adapter: Chips used to convert serial
data - such as Midi or RS232 - into the

parallel type which can be stored in
ram or dealt with by the processor.

There are two in the ST: One to

receive and send Midi signals, and the
other to talk to the keyboard. The key
board unit contains a processor of its
own - an HD 6301 - which handles

the keyboard, mouse and joystick and
also keeps track of the real time clock.
It sends its messages in serial form to
the 6850 on the main board for

processing.

E YM 2149 PSG - Yamaha pro
grammable sound generator:
Responsible for creating the ST's music
and sound effects, and is widely
regarded as a rather poor choice for an
otherwise very powerful machine. It is
now rather old and has been greatly
surpassed by a number of other chips.

[B Modulator: Converts the RGB
colour signals from the Shifter into an
RF - radio frequency - television
picture.

It also supplies the composite video
signal required for video recorders and
some less expensive monitors. The
1040 does not contain a modulator, so

it is incapable of running a composite-
type monitor or a video recorder.

[E Colour/RF circuitry: Used to create
the final video signals.

[E Reset chip.
[E Internal floppy disc drive data

connector.

[E Internal floppy disc drive power
connector.

2j] Main power supply connector.
EH Keyboard connector point.

jj| Computer master 32MHz clock
crystal: Divided down inside the
Glue chip to give the 8MHz signal.

E Composite video colour clock
crystal: Used to make colour TV
images.

IE RS232 supply voltage generator
|-H2vand-I2v).

HH Ram select latches: Used by the
MMU (25).

32 RS232 Send/receive data chips.
CT3 Cartridge port.
F75 Midi-in connector.

FC1 Midi-out connector.

IE Reset button.
EHPower socket: For the separate

power supply board.

|2 Power on/off switch: On the
separate power supply board.

IS 13-pin RGB/mono/composite
monitor socket.

IE RF-out TV connector.

IE External floppy connector.

IE DMA port: For a hard disc or laser
printer.

IE Printer port: Bi-directional Cen
tronics.

IE RS232 port: For modems.
IE Internal floppy disc drive: Sits

above the main board.

<m

Exploring the 520 STFA/I

Glossary of terms

Bit: The single smallest piece of infor
mation a computer can handle. It rep
resents either an on or off signal and is
normally referred to as having a value
of one or zero.

Byte: A group of eight bits of data.

Kilobyte |k): 1,024 bytes - a figure
dictated by binary maths. Sometimes
data may be stored as a set of bits - in
that case 1,024 bits make one kilobit.

Not to be confused with a kilobyte
which is in fact eight times larger.

Megabyte (Mb):
1,048,576 bytes.

Serial: If some data is transmitted in a

serial form, each bit of data is sent

down a single piece of wire - one after
the other - with short gaps between
each. This is how the RS232 and Midi

systems work, and they only need a
couple of wires - one for send, one for
receive.

Parallel: Because serial communi

cation is rather slow, a faster method is

often used inside the computer itself.
This relies on a large number of wires
instead of just one, and each single bit
within a given byte will be sent down
a different wire thus making the data
transfer eight times faster.

In fact, the ST is capable of using 16
wires in all, thus allowing the chips to
send two bytes of data - 16 bits in
total - at the same time. This is why the
ST is known as a 16 bit computer.

The Centronics printer connector is
an example of 8 bit parallel data since it
has eight wires and can thus send one
byte at a time.

RS232: A serial data standard used by
the ST to talk to a modem or some

older printers. The speed of sending
data down the wire is defined as its

baud rate. For example, 300 baud is
300 bits of data a second.

Centronics: The normal printer con
nector for the ST, which sends its data

in an 8 bit parallel form. Most printers
these days support this specification.

CPU: The heart of any computer. This
is the chip which does all the work
running your programs. The ST uses a
Motorola 68000 processor which is
capable of dealing with either 16 or 32
bits of incoming parallel data at once -
hence ST: Sixteen/thirty-two. Unfor
tunately a normal ST can only use the
16 bit mode.

Machine code: The fundamental lan

guage which your computer under
stands. It is very simplistic and also very

1,024 kilobytes or

complicated to program. Normally you
never need worry about machine code,
except to know that Gem and most
programs that you will use will be writ
ten in it. Even Basic is itself a program
written in machine code.

Ram: Random access memory. Used
for storing your programs, it contains
no data when you turn on the com
puter, and may be written.and erased
as often as you like. Whenever you
load a program or play a game, ram
memory is used to store the machine
code. Everything will be lost when you
turn the computer off

Rom: Read only memory. Not alter
able, it is permanently set up to contain
programs and data which will never
need to be changed. Gem is stored in
rom memory.

DMA: Direct memory access. A
method whereby information can be
taken straight from a floppy disc or
hard disc, for instance, and placed into
memory without having to ask the
processor to do any work. Similarly
data can be sent from memory to some
external device in the same way.

RGB: A video system which allows
very high resolution by splitting each
colour up into its red, green and blue
component and sending the three sep
arately. Used for the Atari colour
monitor.

Composite video: The system used by
most video recorders to send colour

pictures. Also available from any STM
or STFM machine.

Monochrome: The very high quality
black and white system used on Atari's
mono monitors. This runs at too high a
frequency to be seen on either RGB or
composite video monitors.

RF: The television aerial system uses
radio frequency signals, which must be
converted from composite video at
both the ST and the television end,

thus reducing the overall picture qual
ity. This is why medium resolution
looks so poor on a television set.

MHz: Megahertz. This is the measure
ment of frequency often used to judge
the speed of a computer. One MHz
means one million activities a second,

so a clock frequency of 8MHz as used
in the ST means eight million clock ticks
a second.

Each instruction may take the
processor a number of such ticks - or
cycles - to complete, so don't think of
it as meaning eight million instructions
a second.

i

OR!

\

\

\

\
">

\

\

\

\

V

' \

\

' \

\

\

\

>

\

\

>

>

\

~>
\

\

\

n

Exploring the Mega ST

Opening the case

ALL of the Mega-ST range of com
puters are based on the same main
circuit board, as shown in our

photograph. Many of the components
are the same as those we've already
seen in the 520 STFM, so we won't be

covering them in so much detail here.
The basic design is similar to the

STFM, with the disc drive and power
supply board resting on top of the
main circuit board. In this case the

internal 3.5in drive is located over the

lower right quarter of the board while
the power supply PCB sits behind it,
covering the upper right-hand side of
the main board.

The keyboard on a Mega is a de
tachable unit, giving far more space
inside the casing for future expansion.
This leaves the whole of the left-hand

side of the main board exposed, and an
ideal place for third party add-ons to
be located after connection to the

internal expansion slot.

El

Exploring the Mega ST

The components

B Connector for clock battery: This
lead plugs into the small battery
compartment located in the upper
casing of the machine.
B Internal DMA (direct memory
access) connector: This is an exten
sion of the normal hard disc port at the
rear of the machine Q to allow inter
nal expansion cards such as a hard disc
drive to hook straight into the high
speed DMA bus.
B WD1772 floppy disc controller
(FDC).
Q PC 900 Opto-isolator: This is a
special type of safety buffer which
allows data to pass to and fro down
the Midi lines without any direct con
tact with the main circuit board. This is

to avoid possible damage to the micro
if a wrong cable is attached to one of
the ports.

Inside the chip is a tiny LED and a
photodiode which work in exactly the
same way as the remote control on
your television or video. As the light
flashes in sequence with the Midi data
the photodiode picks up the signal and
converts it back to data pulses - all
without any physical connection
between the input and the output.
Q YM 2149 Programmable Sound
Generator (PSG).
3 Reset chip.

B Direct Memory Access (DMA)
controller.

O Shifter.
Q Blitter: The third of the Atari
custom designed chips which, if fitted,
allows much faster internal movement

of blocks of data. This is most notice

able in terms of graphic speed, and a
blitter can often increase the speed of
block moves and text printing oper
ations by two to three times. If a blitter
is fitted in your machine you will see it
as an extra menu item on the main

desktop Options menu.
•I'l 32Mhz oscillator: This provides
the master clock frequency for the
whole machine, which is then fed to

the Shifter and Glue chips to be cut
down to the more familiar 8Mhz

required by the processor.
ill MK 68901 Multi-function
peripheral (MFP).
IM Expansion slot: The equivalent of
the IBM Expansion Card system, this
connector allows you to easily plug in
specially designed add-on boards.
These could have a variety of functions,
but as yet very few are available.
IE1 Motorola 68000 micro
processor.

IH Glue.
IH Spare power outlet: Connected
in parallel with the power supply
board IH this may be used by third-
party expansions and other add-ons
which require their own power. The
supply is rated for 5v DC and 12v DC.
• ra Power supply connector: The
separate power supply board plugs in
here.

•« Internal floppy disc drive
power cable.

•1:1 Internal floppy disc drive data
transfer cable.

fTl MC 6850 asynchronous
communication interface adaptor
(ACIA): The same as in the 520ST.
Wl MC 6850 asynchronous
communication interface adaptor
(ACIA). This second ACIA is used to
convert the serial data from the exter

nal keyboard's HD 6301 processor into
the parallel form required by the rest of
the computer.
HI Real time clock PLA: This con
verts the signals from the clock chip
into a form that the computer can more
easily deal with.
E£J Rom: The Mega ST normally uses
two one-megabit rom chips, giving
256 kilobytes of permanent memory in
which to hold Gem and the rest of the

operating system. There are six sockets
in all to allow for both the older OS

roms and for future expansion.
FE1 74LS244 and 74LS373 ram buff

ers: These control the data going
between the ram chips and the
memory management unit.
Ml Ram: Rather than using the older
256 kilobit chips found in the 520 and
1040 machines, the Mega ST includes
high capacity one megabit ram chips.
Eight of these may be used to give a
full megabyte of memory - as opposed
to 32 of the older type. Thus a Mega 2
will contain 16 of these new ram chips
(as shown) and a Mega 4 would have
all 32 spaces filled.
Bj] RP5C15 real time clock: This
stores the current time and date used

by Gem and the disc handling system.
When the ST is switched off the clock is

kept running by the battery in the
upper casing of the machine..
El Rom select chip: It handles the
various possible configurations of rom
chips, depending on which is fitted into
your particular machine.
WiM Memory management unit
(MMU).
H:l Ram select chips.
ttl Rom selection wire links: They
define the size and type of rom chips in
use.

External

connectors

Cj Keyboard - serial data transfer.
1=1 Cartridge connector.
3 DMAPort - hard disc, laser printer.

E External floppy disc drive.
B Monitor - RGB/monochrome only.
13 Midi in.

3 Midi out.
d Centronics printer port.
[I 240v AC mains socket.
fj RS232 serial port.

[3 Power switch.
D Cooling fan.
El Reset button.

O

^

The ST's internal structure

DHfi

ULfi

SO far we have lifted the lids of the 520STFM and Mega 2 STs, looked inside
and seen which components are used and where they are located on the
main printed circuit board. We have also given a brief description of what
the components are and their task within the ST.

We'll move on now to examine some of the important components in
slightly more detail, and see where they fit in with the overall structure
and design of this range of complex microcomputers.

Circuit and wiring diagrams of the PCB - printed circuit board - are
extremely useful to the experienced hardware engineer, but for our pur
pose a simple block diagram will suffice to show how the components are
connected and how they interact with each other.

128k expansion
cartridge

•4

0,5 - 4Mb a MC688BB . 192k operating
ran ^™* Processor f*" systen ron

CRT YM2149
PSG

HC68381

MFP
WD1772

FDC
HC685B

fiCIfi

HC685B

fiCIfi

HD63B1

keyboard

processor

sHrizZi
Hard
disc

Video
Centron
ics RS232

Floppy

disc
Nidi Joy Keyboard

4- i J J J Joystick
Monitor Printer Moden 2 Drives Keyboard nouse

Motorola MC68000 microprocessor

Ground

Clock

Processor

status 4"

Synchr
cont

onous /
rol <

Systen
control 4

The overall structure of the ST

1>

m - RZ3

Address bus

DB - D15
Data bus

Asynchronous
control

Bus arbitration
control

\ Interrupt
/ rnntrol

The 68000 can run at a variety of
speeds from around 4MHz up to about
12MHz. Atari chose a middle of the
range frequency of 8MHz for maximum
reliability.

It is a 16 bit processor with 32 bit
internal architechture, and contains a
total of 32 registers - eight 32 bit data,
and seven 32 bit address registers, two
32 bit stack 'pointers and one 32 bit
program counter.

The 24 bit address bus (pins A0 to
A23) enables the processor to directly
access 16 megabytes of memory.
When accessing words of memory the
odd address is treated as the low byte
and the even address is the high byte,
and you can only access words with an
even address.

The 16 bit data bus enables byte and
word sized chunks of data to be

accessed. Each time memory or an I/O
call is made the processor provides
information on the status lines saying
whether it is accessing data or program
memory and in user or supervisor
mode. The MMU - memory manage-

The 68000 processor - the heart of the ST

bus. Interrupt control provides eight
levels of priority for peripherals
requiring attention from the processor
ranging from zero - no interrupt - to
seven - a non-maskable interrupt.

ment unit - monitors these.

Bus arbitration control allows a

peripheral device like the DMA - direct
memory access - controller to take
over operation of the data and address

The ST's internal structure

MC6850 asynchronous

communications

interface adapter

Tx clock

J.
Tx shift

register

Jransnit
* data

. CTS

• DCD

4 RTS

The ST uses two of these 24 pin ICs,
one for serial communication with the

mouse, keyboard and joysticks, and the
other for the serial Midi port. The Midi
port may be reconfigured as a second
serial port, say for networking STs. The
ACIA communicates with the 1MHz

HD6301 8-bit keyboard controller at a
fixed speed of 7.8Kbits per second.

The 6850 has four registers, two
read only and two write only. The
status and receive data, and the con

trol and transmit data registers appear
as two addresses in the ST's memory
map. The keyboard ACIA is at SFFFC00
and the Midi interface is at SFFFC04.

Tx data

register

0(1 - D7

Data bus

buffer

|—— Status
^^™ register

Control
register

Rx data [
registe i
R* data 1 IRX shift |. Receiv
register r^ register^™"* data

Rx clock

The MC6850 asynchronous communications interface adapter

. Sound

* output

Ton-

Mixer

D/fi

Tcne

Hnp

flnp _,

/
» VI

Tens
flnp 0/fl

/
f

Noise
Envelope

generator

CPU bus
i I/O

eqister
3 bit I/O port A'I

CPU bus
1 I/O

egister bit I/O port B•|_

The structure of the sound system, incorporating the
Yamaha YM214 9 programmable sound generator

WD 1772 floppy disc controller (FDC)

mmimmmmM

programmable

sound generator

This chip has three independently pro
grammable pure tone generators, and
a programmable noise generator
combined with a mixer for the noise

and tone channels. It has 15 volume

levels and programmable envelopes
complete with attack, decay sustain
and release.

In addition to this it has a fully soft
ware controlled analogue output and
two bi-directional 8 bit data ports.

The YM2149 PSG has 16 internal

registers which can't be directly
addressed - write to &FF8800 with

the register number in the bottom four
bits.

Developed by Western Digital, this
chip contains all that is necessary for
controlling 3.5in (and 5.25in) disc
drives. It is capable of working in both
double and single density modes, but
in the ST is restricted to the former so

the maximum amount of data is stored

on each disc.

Sector lengths can be 128, 256, 512
or 1,024 bytes long - the ST uses 512
byte-sectors and the format is very
similar to IBM's. It has a variable step
ping rate - the time the FDC waits
between tracks when moving the
read/write head across the disc - from

2ms up to 6ms.
To avoid read errors, when each

sector of data is written to the disc a 16

bit checksum (CRC - cyclic redundancy
check) is calculated from the data and
stored after it. When the sector is read

back at a later date the checksum is

recalculated and compared with the
one on disc. If they both match then
the read operation was successful.

£
IData output buffer!

Data register Connand
register

T

Data shift
register

Address nark
detector

♦ -

CRC logic —I

Interface to
computer
systen

'11

L

.__L_-J

Sector
register

Arithnetic

logic unit

FIoh

control

iZC
Track

register
Status
register

Data
separator

Write pre-
conpensation

i i

Interface
to

disc drive

The structure of the WD1772 floppy disc controller

_

_

Fault finding

THE ST is a very reliable micro and it should provide you with many years of
trouble-free computing. Occasionally things do go wrong, but some of the
faults are relatively simple and easily cured. It is also possible that when an
ST appears to be faulty, the cause can be something completely different,
like a damaged floppy disc. So let's look at some common problems and see
how to isolate and cure the faults.

Power problems

When connecting up your ST and per
ipherals - monitor, hard disc, printer,
modem, Midi keyboard, cartridge and
so on - always make sure that the
power to all the items is off. Plugging in
peripherals when they are powered up
can cause guite serious damage. And
the same goes for unplugging them
too - always remember to switch
everything off first.

After plugging everything in insert a
formatted disc - the UK Language disc
provided with the micro will do - into
the drive and first switch on all your
peripherals, then your ST last of all.
After a short while the desktop should
appear.

What happens if it doesn't? The fault
could lie almost anywhere, but we'll
just look at some of the more common
places. First, check that the power on
light in the bottom left-hand corner of
the keyboard is lit.

If it isn't the problem could lie with
the fuse in the plug. Check this and
replace it with a 3 Amp one - not 13
Amp as this could cause the ST a great
deal of damage if a serious fault occurs.
You could also test the power at the
wall socket by plugging in a table
lamp.

There's another fuse inside the ST on
the power supply board. However, if
this has blown it may indicate a more
serious fault than the one we are trying
to trace, and a qualified technician may
be called for.

If the power light is on but you
haven't got a picture of the desktop
within a few seconds, check the moni
tor or television power light if it has
one. If this isn't lit check the fuse. Make
sure the brightness and contrast are
turned up, and if using a TV, make sure
it is tuned to the right channel.

If the power to the micro and moni
tor is on, but still no desktop try swit
ching on the ST again, but this time
without a disc in the drive. In this case
the desktop should appear after about
two or three minutes. If it does, the disc
you tried to boot up with may be
faulty. Test it by switching on with
another disc that you know to be OK
in the drive.

roblems

NORMALLY, when you hold down the
Alternate key and press Help the
screen will be dumped to the printer.
It's useful for making hard copies of the
screen when using software.

If nothing happens, first check that
the printer is connected and on line.
Again check that the fuse is OK. If still
nothing happens, it may be that the
software simply won't allow you to
make a screen dump. This is true of

most games software.
What commonly happens is that the

printer puts a blank line in between
each printed line and so ruins the
dump. This is caused by the DIP swit
ches being set incorrectly inside the
printer. They should not be set to
produce automatic paper feeds. The
printer manual will tell you the location
of the switches and how to alter them.

DRIVE faults aren't very common, and
most errors can be traced to corrupted
discs. Here are a few simple rules to
observe when using discs; they will cut
down on the number of errors:

• Don't switch off the micro when the
drive busy light is on.
• Don't insert or remove discs when
the busy light is on.
• Don't leave discs in the drive for
long periods when they aren't being
used.

• Don't leave discs in the sun.
• Don't leave them near magnets - for
instance, on top of your hi fi loud
speakers.

• Don't touch the disc surface with
your finger.

Many software packages are
supplied on discs using a non-standard
format so they can't be copied. Ifyou
try, you are liable to get disc errors or
corrupted software that won't run -
there's nothing wrong with your ST.

Mice problems

IF your mouse isn't working properly
make sure it is plugged in correctly,
and in the right port - port zero on the
left. The mouse picks up dust and dirt
quite easily and occasionally needs
cleaning. Turn the mouse over and
slide the cover over the ball in the

direction of the arrows. The cover and
ball should fall out.

The metal rollers inside the mouse
body can be reached quite easily and

gently wiped clean. The ball can be
cleaned with a soft dry cloth.

Software

•roblems

IT is quite rare to find a completely
bug-free piece of software, and most
packages have one or two undocu
mented features - bugs. If a program
crashes or bombs out then the fault is

either due to a hardware or software

problem - always suspect the latter
first.

Try switching off and running the
package again, as the software may
have become corrupted for some
reason. Pressing the reset button clears
the memory and resets the ST to the
state it was in when it was switched
on. However, some packages can sur
vive a reset - particularly ram discs -
and you may find that the next pack
age you boot up won't run properly.
Switching off for a few seconds will
probably cure this.

Finally, a word or two about viruses.
They aren't too common on the ST, but
there are one or two around, and they
are liable to multiply if not stamped
out.

Viruses are simply programs that are
stored on a floppy disc, but can't be
spotted either because they are stored
on a special part of the disc called the
boot sector, or because they are given
filenames which imply they are
something completely different, even
useful.

They are loaded when the ST is
booted up with a disc containing the
virus, and like desk accessories, they
are installed automatically. They can't
damage your hardware, but they can
do irreparable damage to your soft
ware. Switch off your ST to get rid of
them and boot up with a disc you
know to be free of the virus, like an
unformatted one fresh from a new
pack.

Pin-outs of the ST's ports

Modem

1

2

Protective ground
Transmitted data

3 Received data
4

5

Request to send
Clear to send

6 Not connected

7

8

9-19

Signal ground
Data carrier repeat
Not connected

2 3 d 5 67 8 9 '0 1 1 12 13

^ 7
a i^ 16 I? 18 19 20 2i 22 23 2d 25

20 Data terminal ready
21 Not connected

22 Ring indicator
23-25 Not connected

Fault finding

Printer

i Strobe output
2 Data 0

3 Data 1

4 Data 2

5 Data 3

6 Data 4

7 Data 5

8 Data 6

9 Data 7

10 Not connected

1 1 Busy input
12-17 Not connected

18.25

H 1? 11 '0

Ground

9 8 7 6 5 * 12 1

/

2C 21 23 2

/
' 21 20 19 '8 17 16 IS i-i

Midi Out

Thru transmit data

Shield ground
Thru loop return
Out transmit data

Out loop return

Midi In

1 Not connected

2 Not connected

3 Not connected

4 In receive data

5 In loop return

iuse/Joystick

1 Up/XB
2 Down/XA

3 Left/YA

4 Right/YB
5 Not connected

6 Fire/left button

7 +5VDC

8 Ground

9 Joyl fire/right button

12 3 4 5

3 15 17 19 2, 23 25 27 29 3, 33 35 37 39

Cartridge
i +qvnr ,3579.,,

4 Data 15 2 4 6 ' » " ' 16 18 20 22 24 26 28 30 32 34 36 38 40

5 Data 12 22 Address 14

6 Data 13 23 Address 7

7 Data 10 24 Address 9

8 Data 1 1 25 Address 6

9 Data 8 26 Address 10

10 Data 9 27 Address 5

1 1 Data 6 28 Address 12

12 Data 7 29 Address 1 1

13 Data 4 30 Address 4

14 Data 5 31 Rom select 3

15 Data 2 32 Address 3

16 Data 3 33 Rom select 4

1 7 Data 0 34 Address 2

18 Data 1 35 Upper data strobe
19 Address 13 36 Address 1

20 Address 15 37 Lower data strobe

21 Address 8 38-40 Ground

<(• • • • vMonitor

I Audio out 12 V• »#» •ys
2 Composite sync >—<y
3 General purpose output
4 Monochrome detect 9 Horizontal sync

5 Audio in - 10 Blue

6 Green 11 Monochrome

7 Red 12 Vertical sync

8 Plus 12-volt pullup 13 Ground

r-^M~i

Floppy Di 9 / • • v

I Read data
\ * * • /

2 Side 0 select •\>«*y«
3 Logic ground >-r^
4 Index pulse
5 Drive 0 selecl 10 Step

6 Drive 1 selecl 11 Write data

7 Logic ground 12 Write gate

8 Motor on 13 Track 00

9 Direction in 14 Write protect

Hard Disc

1 Data 0

2 Data 1

3 Data 2

4 Data 3

5 Data 4

6 Data 5

7 Data 6

8 Data 7

9 Chip select
10 Interrupt request
11 Ground

Joystick

,09876

\;
19 18 17 16 IS 11 13 12 11

12 Reset

13 Ground

14 Acknowledge
15 Ground

16 Al

17 Ground

18 Read/write

19 Data request

7

1 Up
2 Down

3 Left

4 Right
5 Reserved

6 Fire button

7 +5VDC

8 Ground

9 Not connected

12 3 4 5

o

r~\

~

Exploring the ST's drives

THE words disc and disc drive

are often used when talking
about computers, but how many
people really know what makes
the ST's disc drive work? By
understanding the physical
nature of discs and drives you
will be more able to cope with
the situation should things start
to go wrong.

What makes

them tick?

A DISC system is a fast and convenient
way of storing programs and data.
Large powerful mainframe computers -
and some STs - use hard discs. These

are made of rigid aluminium and
require a very precise drive mechanism
as well as clean air to operate in.

Most micros like the ST use flexible or

floppy discs. These have a much smaller
capacity for storing data and are much
slower, but generally they are more
than adequate for the single user, as
they are much cheaper and require less
finicky conditions than hard discs.

The first point to strike a newcomer
when looking at a disc is the unmistak
able fact that it is square. But a
moment's inspection will reveal that
inside the square plastic case is a round
disc made of thin flexible plastic.

Coated on the plastic is a dark
brown, sometimes black, layer of mag
netic material. This is usually some form
of metal oxide, ferric being the most
common. The coating is like the one
you get on music cassette tapes, so you
can see that a disc is like a cross

between a tape and a long playing
record.

k record

DO you remember the old riddle:
"How many grooves are there on a
long playing record?" The answer is, of
course, two - one on the front and one

on the back. For a floppy disc however,
there are no physical grooves. Data is
stored as a series of magnetic tracks -
concentric rings of data. All tracks hold
the same amount of data despite those
on the outside being longer than those
on the inside.

Some computers do have different
amounts of data on different tracks,
but most are like the ST and have the
same. This simplifies the disc filing
system, and as outer tracks tend to be
more frequently used, it also slightly
increases reliability. Some drives - like
the ones built in to older 520STFMs -

only use one side of the disc, but all
new STs use both sides.

The disc drive is the "record player",
a device to read and write data to the

disc. Basically it consists of a drive
motor to rotate the disc inside its plas
tic case. It does this by gripping the
centre of the disc. Once it is spinning

3 C"

_ Write protect
notch

/protected when
unobscured)

Label

,

/

/
/

/
/
1
1
\
\
\
\

/

s

1

n

\
\

\

f
1
\
\

s

— ^

\

\

f > r, \

\
\
1 Hub! .7

'"V
y

- --

/
/

/
/

\
\

-, \
'- • \

*1
>

i 1 s N /
/

i i
i i
i i

y

J
window

\ I I

Direction of insertion

into drive

The components of a 3.5in floppy disc

SONY was the first company to produce the 3.5in disc system, the format used
in the ST, and manufactured the first 3.5in drive to appear in quantity. It was
designed to be an extension of the 5.25in drive currently in widespread use, and
is completely compatible with it - meaning you can also use 5.25in drives with
your ST.

The floppy disc is housed within a hard plasticcase and has a spring loaded
metal shutter which covers a slot where the read/write head accesses the disc. A
single-sided disc has an unformatted capacity of 0.5Mb and a double-sided drive
has a capacity of 1Mb.

A precisionservo-controlled DC motor rotates the discat 300rpm ± 1.5%, and
the drive must read each bit of data in 0.5 microseconds.

the read/write head is moved across
the surface to position itself over the
correct track.

THEhead is usually moved by means of
a stepping motor, which moves
through a very small angle, usually 7.5
degrees, every time it receives a pulse.
The rotational motion of the motor is

converted into lateral head movement

by a helical worm gear. Thus the head
can be moved with precision over the
surface of the disc.

However, when the drive is first
switched on the head can be in any pos
ition, so there must be some way of
finding precisely where it is. This is usu
ally done by a small micro switch
which is tripped by the head when it is
over track zero.

The ST will keep issuing pulses to
step the head backwards until this
switch is tripped. This is known as res
toring the head.

'•m m . • •'•»•'

Magnetic disc storage

AT one time magnetic tape was the standard storage media for all types of
computer systems, but this has been superseded by magnetic discs. Disc drives
are available in a variety of sizes and forms, from the extremely high capacity
multi-platter hard discs found in mainframes to the small 3.5in drives in the ST.

All disc drives are basically the same, despite differing outward appearances,
and all operate in essentially the same manner. They record a pattern of binary
numeric data in the magnetic oxide surface coating of the plastic disc. This
pattern is written by a small coil contained within a tiny read/write head. The
coilalso acts as a minimagnetic receiver which can recognise the smallmagnetic
pulses that represent data bits on the disc.

Unlike a hard disc drive, the floppy drive head actually touches the disc
surface.

10

Exploring the ST's drives

ommunicating

via the bus

IN addition to the mechanical parts, a
disc drive contains the electronics

required to turn the motors on and off,
as well as writing to the disc. These
electronics communicate with the ST

over the disc bus, which is just a series
of signal wires used to connect several
devices together.

Most disc drives stick to a standard

bus layout on the edge connector at
the back of the drive. So manufacturers

can have their own design of drive
electronics and still be compatible with
other people's products.

As more than one drive can be con

nected to a bus, each one must be

assigned a number. This is done by
making a link on the electronics board.
Each drive on the bus must have a

unique number to prevent more than
one drive being active at any one time.
The select signals on the bus will
therefore activate only one drive.

At the ST end of the disc bus there is

a WD 1772 disc controller, a very
complex device. It accepts command
numbers from the ST's 68000 micro

processor and generates the sequence
of pulses on the disc bus to enable the
drive to carry out the required action.

The 68000 can issue a command to

move the read/write head to track 10.

The disc controller chip then looks to
see where the head is, and works out

how many steps, and in what direction
they will be, in order to get to it. It then
issues that number of head step pulses.

Finally, when the head is in position
it reads the track identification number

to confirm that it is at the right one.
Having completed that task it reports
back to the microprocessor that the
move has been made successfully.

If the move was not a success this

fact is reported and it is up to the disc
filing system software to take appro
priate action. Usually, the head is re
stored (moved to track zero) and
another attempt is made. Several such
attempts may be made before the disc
filing system reports an error.

Chunks of data

THE track identification number

mentioned earlier is put on to the disc
during the formatting procedure which
every disc has to go through before it
can be used. This writes on the disc

track and sector information.

We have already seen that a track is
a ring of data stored on the disc, but
this is still too large a chunk of storage
to be convenient. This is because disc

storage would have to be allocated in
tracks, thus wasting a lot of space - a
whole track would have to be written

to save just one byte.
To remedy this, each track is broken

down into a number of sectors - usu

ally nine, but 10 is possible. A sector is
the smallest unit of storage the disc
holds, and all data transfer to and from
the disc is done with sectors of data.

Drive selector

The disc bus Power plug

The stepper motor

The disc motor

An ST disc drive

Hard discs

The ST's hard disc is a descendent of the first large multi-platter Winchester
hard drives used on mainframe computers. These were very bulky and
expensive compared to the ones available for the ST now. Originally 14
inches in diameter, they have been compacted to as little as 3.5 inches.

The disc rotates at around 3,000rpm - 10 times faster than a floppy -
leading to rapidaccess times. Because of the vast amount of data crammed
on to a hard disc it is made to a much greater degree of precision than a
floppy drive. It is normally fully enclosed within its own dust-free environ
ment, and a tiny read/write head the thickness of a human hair floats on a
thin cushion of air a fraction of an inch above the disc surface.

The drive is quite susceptible to damage because of the small distance
between the disc surface and the head. Jolting it can cause the head to crash
against the disc surface with disastrous consequences.

'">

-

_

Getting set up

The object of this section is to investigate

the ways that a small business can be

successfully managed or operated using

an ST. We aim to look at how to begin

your set-up, the various pitfalls to avoid

and some of the best software available

to get the most from your ST in business.

Equipping yourself

for thejob

WHETHER we like it or not, we are
immersed in Margaret Thatcher's
share-owning and small business
democracy. Since 1984, more than
340,000 small businesses have started

up using the government's Enterprise
Allowance Scheme. This provides for
an individual who can invest a

minimum of £1,000 in their chosen

concern and supplements the business
at a rate of £40 a week for the first

year. Many other small companies
have started under their own steam

without government help.
It is perhaps coincidental that the

ensuing four years have also seen the
most startling growth in the use of
home micros and PCs. It is therefore

not surprising that as a result of the

The set-up
THE first difficulty is encountered in
defining what constitutes a small busi
ness. Sole trading or any business
which employs fewer than 20
employees surely falls into the category
of small, but exactly what the ceiling
may be is debatable.

Most people starting self employ
ment for the first time will begin - at
least initially - as a one man operator
(sole trader) or by employing only a
handful of people. Consequently, an ST
would make an ideal first purchase.

For most purposes a 1040ST with a
monitor would be a wiser investment

than a 520ST, for the justifiable reason
of the extra memory capacity for appli
cations such as databases and DTP

packages. At a later date it will be a
simple process to upgrade to a Mega
ST. However, if you expect rapid
expansion it is probably more cost
effective to go straight for a Mega 4 ST.

Second disc drives at this point are
not a necessity but are very useful to
speed up copying of data between
discs. A modem, allowing your ST to
send fax, telex and Email messages, is
becoming more and more essential for
companies of all sizes.

For most business uses a reasonable
dot matrix printer is a minimum
requirement. Panasonic, Epson and
Brother all produce such printers at
affordable prices.

The choice between a hi-res mono

technological revolution more and
more businesses are reliant for their

day-to-day running on the power of
the silicon chip.

The vast majority of these new small
businesses are being run by people
who have become self-employed for
the first time, and perhaps more signifi
cantly, have had little or no experience
with micros or PCs.

Business people are on the whole
concerned only with the value of such
technology to the growth and pros
perity of their business. But it is easy to
become lost in a world of techno-

jargon and to make totally inappropri
ate use of these most powerful pieces
of equipment. Worse than that, it is
also quite common for budding entre
preneurs to spend hard earned money
on a computer system and then let it
gather dust on a desk, doing no work
whatsoever.

The ST is a versatile micro which is

well supported by some excellent busi
ness software. Both the 520STFM and

chrome or medium-res colour monitor

is one of intrinsic choice and size of

wallet - remember that you will pay
three times more for a colour monitor.

Some business packages will run only
in monochrome, but increasingly soft
ware is being released which runs in
medium or low resolution, and as such
a colour monitor should not place too
many limitations.

A solid desk or table situated at a

judicious position in your premises is
essential as a workstation to site your
prized micro. An expensive plinth is not
necessary for your monitor, as viewing
angle is a matter for personal pref
erence. You can always construct a DIY
unit from chipboard to mount the
monitor at eye level.

Alternatively, modern research
shows that the optimum position for a
VDU is below the level of the micro -

as per television newsreaders. As this
would involve cutting a large chunk
out of your desk, it is not a strategy I
would recommend.

Thankfully your printer can be
placed in any position that the lead
allows and where paper feed is not
snarled. All that matters is that you are
comfortable working with your STand
monitor. If however, backache or
eyestrain result after a longish working
session, I would suggest some alter
ation of the set-up arrangement or
height and position of your seating.

1040ST retail at less than £500 and can

provide a firm foundation for a
computer-run small business at
minimum outlay.

It doesn't matter whether your busi
ness is that of a rural hairdresser, local

greengrocer, wholesale garden gate
supplier, architectural survey service,
personal tutoring concern or even a
software distributor, the STcan provide
the important infrastructure needed for
your enterprise to succeed.

Getting to grips

If this isyour first meeting with an Atari
ST it is certainly a wise ploy to play
with your new micro for a few days
before attempting to use it for business
purposes. Use some of the introductory
software and don't feel embarrassed if

you spend half your time at this stage
playing space invaders. Such play and
experimentation will help you get a
feel for your ST and also aid you in
coming to terms with some of its
eccentricities.

Read the user's manual which comes

with your micro and learn by heart the
important procedures of copying,
formatting, write protecting, booting
programs, opening and closing win
dows and using folders - especially
preparing AUTO folders. Also practice
setting preferences, utilising the con
trol panel, saving the desktop and
generally getting used to working in
the Gem environment. In short, get to
know your ST before taking any
unnecessary risks with business data.

Good habits

Ensure that you make a working copy
of your ST Language disc then store the
original upright in a safe, cool and dry
place. Follow this policy with any new
commercial disc you may buy -
providing of course that the software
allows back-up.

Wherever possible work with a
back-up disc and keep your valuable
masters out of harm's way. You never
know when you might format or wipe
a disc in error so it is always prudent to
have copies. As long as you don't dis
tribute them to friends you will not be
breaking any piracy laws.

Another habit which is worth

forming early on is to keep commonly
used discs close to hand in a top
drawer or in a rack or box on the desk

top. As your collection increases,

Getting set up

Desk File view i||;Ml|l|
Figure I: To install an application upon
boot up choose Install Application from
the Options menu

j§ 161236 bytes used in 5 itens.

J
j 1

il

[4 j
CONTROL.fICCEMULATOR.flCC BASIC .PEG SAHPLE.PRG BASIC.ESC

Figure III: Finally save desktop

ensure that you index them for fast and
easy access. There can be nothing
more frustrating than scrambling in
search of important data at crucial
moments in the life of your business.

It is perhaps a sagacious idea to
switch on your ST at the beginning of
each day and to leave it switched on
until close of business in the evening. A
micro uses very few units of electricity
compared to most household applian
ces, so you have no need to worry
about suddenly soaring electricity bills.
This way you will have immediate
access to any important file or letter
during your working day without the
nuisance of having to power-up all of
your computing equipment.

A useful process to learn at the start
of your undertaking is a quick routine
for installing some business appli
cations. It can be cumbersome to have

to load an application and then load
previously saved data. It is much easier
to double click on the data file, have

the application boot up and the data
file automatically load itself.

This can be achieved using this
working example: It is possible to alter
the desktop so that double-clicking on
a .BAS file causes ST Basic to load with

the clicked file already in it.
If you assume that ST Basic is the

application you wish to install, boot up
the desktop and open a directory
window of the ST Basic disc. Single
click on the BASIC.PRG file so it goes
black, then pull down the Options
menu and select Install Application.

You will be asked for the document

type. At this stage enter BAS. and click
on OK. Again bring down the Options
menu, but this time opt for Save
Desktop. Now by double clicking on
any file with a .BASending STBasic will
automatically load and the BAS file of
your choice will be inserted ready to
run or edit. As you saved the desktop,
you will be able to do this whenever
you boot up this Basic disc. Equally, of

course, this method can be transferred
to any type of application and will
work with many database, spread
sheet and word processor packages.

However you must select the appro
priate file type for the application you
are dealing with. This may take some
practice so once again it becomes part
of your spare time learning activities.

It is also helpful to install a ram disc
in an AUTO folder on your work disc,
which will be loaded when you boot
up the disc. This will enable fast
copying and flexible storage capacity
when working with large amounts of
data.

After a period you will perhaps
surprise yourself with the amount of
use you gain from a fast ram disc.

Many good Ram disc programs are
available in the public domain, either to
be downloaded through MicroLink or
on 3.5in discs from PD libraries. These

cost little more than the price of the
disc.

—

-

Getting into word processing

IN this section, examining how
the ST can be put to use in the
office and small company, we
will look at the many different
packages available - word
processors, spreadsheets and
databases - that can streamline

a business and improve its
efficiency.

First we'll look at word

processors. The cost of these
range from free public domain

A WORD processor is a piece of soft
ware which will enable you to write
letters, forms, memos and articles on
screen and works rather like an elec

tronic typewriter.
These can then be changed, edited

and have their fontstyle altered at will
without resort to correction fluid, scis
sors or paste. They can then be saved
to disc or exported to a printer and
duplicated freely on A4 or foolscap
paper, envelopes or labels.

For anyone familiar with an elec
tronic typewriter the transition to a
word processor should be quite pain
less. The advantages over more trad
itional methods of writing soon
become obvious.

In the world of these hi-tec writing
aids, ST Writer, Speedwriter and 1st
Word are obtainable from PD libraries

- you will normally only have to pay
for duplication costs and the price of a
blank disc. Each are superb user-
friendly word processors, with full on
screen help documents and are cap
able of handling large letters and mail-
shots.

1st Word is Gem-based and fully
Wysiwyg - which means: What you
see on screen is what you get on paper
- with easy to use editing facilities.
Conversely, ST Writer and Speedwriter
are extremely fast but non-wysiwyg.
All are worth looking at and may help
colour your preferences for future
word processing.

However, none of these programs
include spelling checkers nor mail-
merge facilities available on commercial
contemporaries. These extra additions
along with utilities such as Etikette - a
label printing program - can be collec
ted from the public domain.

A closer look

1st Word, and its contemporaries
which are Gem-based use the mouse

to select commands. Edit screen com

mands which can be accessed by
pressing any one of a series of pre
defined function keys are available on
most types of word processor. These
can do anything from deleting lines of
text to reformatting blocks.

Keyboard driven word processors
load up with what is called a command
page as can be seen in Figure I. This is
the command page from ST Writer and

packages up to ones costing
several hundred pounds. The
questions a businessman must
ask is: "Which package is best
for me?", "What can a £200

word processor do that a £10
one can't?'.

To enable you to decide which
package provides you with the
right features at the right price
we'll take a whistle-stop tour
through what's available, start

ing with the free programs.
Experimenting with one of

these will enable you to make a
more informed choice of what

suits you best.
You may find everything you

want, or you may say: "If only It
would do this ... or that ...".

Armed with this knowledge you
can go and buy the package
that actually has the features
you need.

ST WUTERa rev 1,56

Copyright 3 1986 by Atari Corp,
All rights reserved.

jREATE File JOflO File

iELETE File JUNT File

SIT File pE File

JORHAT Disk 2ECEIUE File fron 850

BtDEX of Files jjRHlfSFflRH Colors

SUIT

1 SELECT LETTER

Figure I: The command page from ST Writer

A File Edit Block Stale Help

1,1 Helcme tt 1st H*ri

Helcone to 1st Hord fro* GST So
processing package designed e
conputer and the GEH operating

1st Hord is suitable for all h
sinple neno or letter to a>
particularly useful in an envir
paste is a cannon activity,
prepare forn letters for nail n
which is available is an option

1st Hord has been designed t
operate without inposinfl unn

IFI
3 BOLD

mmmmmlmmmlmt

news
F4
LIGHT

Timw89
!"!$Xt' (]»+,-,/
12 3 4 5 6 7 8 9 I I < = > ?
A 8 C D E FG H I J K LH. N 0G

P

in

0 R
a b

<) C
U 5

If
1 0

i*D, S
1 3

STUUHXVZtS]
c d e f g h i j k 1 n

s a ? n ?Sti H
jj a i i {
itiii)!
u n fi 3 0
ieEjj
i i i n i

n

e e e l i i A
0 ii {
r i $

£¥

i i Ii
] n in i i ni Uai

F6 F7

DEL LUC NEW PAGE

FS

CEHTER INDENT
Pie E
REFUBMTl

Figure II: 1st Word's edit page and character set - note the Wysiwyg display

allows you to select from 11 options.
Other packages present a similar
selection.

On the command page you will usu
ally begin by selecting Create File - or
document - and the screen will then

toggle to what is called the edit page.
However, on Gem-based versions the

screen will load in edit mode with

function commands available on screen

in a separate box.
It is on the edit page that you will

write the text you wish to process. You
can return to the command page at
any time by pressing the Escape key.
This is true with most word processors.

On the edit page you will be able to
set-up vertical and horizontal rulers to
justify your text in preparation for
printing it out. This is normally

achieved by setting headers.
You type in the header code - as

explained in the individual help docu
ments - and then set a value for it. For

instance TO would set the margin at
the top of your page to zero and L7
would give seven spaces in the left
margin of the page.

Word processors also allow you to
define a ruler - that is the width of text

you wish to create. This is achieved
either by selecting a command such as
Default Ruler from the command or

edit page. If you bear in mind that you
would normally print out to a default
of 40 or 80 characters width you can
redefine the ruler to anything from 5 to
80.

It is best to experiment with these
headers and rulers before you attempt

Getting into word processing

112 14 3 05 El]16 778 12 U12 ^i32fi
!Hfr5 ST Writer 3 v, 1,78 31 Manualy
iWffutorial Page GQ_
What is a Word Processor?!

Whether you're a student facing a tern paper, a business professional with
frequent reports to write, or an aspiring novelist, ST Writer can help gou
beat those deadlines — with tine to spare, No nore tedious typing and
retyping of drafts! ST Writer lets gou edit and reorganize your copy until
it's just right,y

Figure III:
St Writer's

non-wysiwyg
edit page

>T Hriter v.

Tuton 3.1

1.70 Manual
Pane, iWhat exactly can ST Writ

to press the [Return] ke

does it for you autortati
a given word in your tex
change the word "pleased
a few keystrokes, ST Hr

What is a Ward Process

Whether you're a student facmc a term paper, s business
professional with -frequent reports to write, or an aspiring
novelist, ST Writer can help you beat those deadlines — with

spare. No more tedious typing and retyping of
edit and reorganize your copy

time to

drafts;

until it

A A A A

:ree nenaryi282654
ress 91 to return to. n

ST Writer lets

s just right.
you

What exactly can ST Writer do for you? On
you never have to press the CRsturnH k
text while typing — the program
automatically. Also, you can change all n
T* ni w»=»r» Mnrri , r. wm ,w- h ea^ +• 4-~ ^-.^-t-^.^^.

Figure IV: Print
out from ST Writer

Desk File View Options

Word Window

e advantage is that

ey to end a line of

does it for you

any incidences of

«• — for instance,
ased" to "glad"
a few keystrokes.
flush against the
left and right
and then delete,

1 the text (or to

=5 the CUndol key

Word 488 is a snail uord processor which is kept as a desk accessory and can
jbe called up uhen required to run off quick Messages or nenos.
-It is a vrg useful utility to have at hand and is available free through
ithe public donain network, .
D Note Pad

Current Line 5 Last Line 19

H mm
Decenber 1988 j>

12 3^
4 5 6 7 8 9 18 i

11 12 13 14 15 16 17 b
18 19 28 21 22 23 24 m
25 26 27 28 29 38 31 N

ii

This is a neno/notepad >

< a Calendar is also handy

\

Ring Bill

Arrange HOT

prepare order
i

'Send invoices

Update spreadsheet

HA6892

File copy..

Figure V:
A selection

of useful desk

accessories

to write an important document.
However, most word processors also
have a set of default value margins and
ruler and these are usually adequate
for many purposes.

Many word processors also allow
you to change the on-screen and print
out style. These can be carried over to
the printed document via the default
printer driver.

Non-Epson printers may need
another printer driver, so you should
check this out first before buying your
selected printer. An example of a 1st
Word character set and part of the edit
screen can be seen in Figure II.

Typical on-screen and print-out
views of work produced by a word
processor are shown in Figures III and
IV.

Other functions

All good word processors allow you

search and replace letters and words in
a selective or global fashion - that is,
individual or all occurrences. This is

normally achieved by setting up the
replace option on the command page
or via a command option on the edit
page. This utility is particularly useful
for editing and correcting text already
prepared.

Another similar facility is the block
movement option which lets you mark
blocks of text and move them to any
position in your complete script. In
most cases you will need to set markers
at the beginning and end of the block
you wish to move.

This is achieved by moving the
screen cursor to the desired position
before clicking on a defined key or
icon. Once again this gives a flexibility
to your writing which cannot be
achieved with a normal electronic

typewriter.
Many small but useful programs

prove invaluable to the novice busi

nessman while he is word processing.
These include the aforementioned

spelling checkers, word counters and
mailmerge facilities, but it is also handy
to have the current monthly calendar
and correct time on-screen during the
working day.

Calendar and clock programs
proliferate in both the public domain
and commercial market. They are usu
ally available as desk accessories which
are loaded upon boot up.

Also useful are note pad and word
window programs which allow you to
keep memos and make jottings on
screen - some such utilities contain

alarms which sound for important
appointments. These memos can either
be saved to disc or printed out for
reference.

Figure V shows a typical screen con
taining a word window, note pad and
calendar. This can easily be toggled to
desktop or overlaid on a working
document.

r\

_

The next step in word processing

THE best commercial word processors
for the ST contain the same standard

editing aspects as featured in their PD
contemporaries - such as search and
replace - plus a lot more besides. All
run in 80 column mode on colour

medium resolution or monochrome

high resolution monitors, but working
in colour on a TV will cause severe

eyestrain, and is best avoided.
Each permits variation in font style,

whether this is limited to normal, italic,
bold and underline type as in K-Word 2
or a more comprehensive selection
available in HB Marketing's Word Up.
Equally, unlike 1st Word and ST Writer,
the commercial alternatives also have

in-built wordcounters. These are

invaluable when you need to write to
a set total word length.

All allow selective page numbering
and some include a master page which
can be customised with details such as

a heading or chapter number and set
as a default for each page you type.

TextPro, Word Perfect and Word

Writer ST also have an index facility.
This enables you to index large pieces
of work to ease cross-referencing and
quick searching for important facts and
figures.

Unique additions also include 1st
Word Plus' Spill File which enables use
of a hard disc for overflow of memory -
particularly useful if you need to write
book-length pieces of text.

Other special features are included

PUBLIC domain word processors for the ST are powerful utilities
which outperform by several orders of magnitude their contem
poraries on the 8 bit micros. However, the commercial
equivalents are even more breathtaking, and despite their often
high price tags will repay the small businessman by automating
many aspects of his day to day work, thus saving time and
money. Let's look at what the market leaders have to offer.

c Part 1

'iit«tlwtttorka4...{D

TI* FBI EIT 1m» ceastnct is tie sinelest fire if uttralletl lua
if curse there art ethers. Saw tasks, like STB Risk iadtfc
EPEiT BTIL tastnct. •tith reseats a scries if liws «til a
aii cMtfitiie is net. raers . mi this iaclates ST task . «se
simlar BILE WEB etastnet. IEPEIT «TIL caa he siMlated mitt

lis shtaK jta rmi« it.M)

Hike the HI KIT lees, a MILE «£» Ini has three distinct mi

mis fans a series if stateneats ir liaes ti he
• . hhbui i«nis Bi _ fens He tail. This is

the SMilaritg eats. Utheajh this is a ceatralM laea
•cttrt, the low tots act tentiaate «til a certaia tMtitita .
lied ii the lilLE part _ is net. The sptax if MULE U» is as

fJMUMiil

Protext spell-checking a document

in the table below which covers seven

of the top word processors for the ST.
Though new products appear on the
market all the time and updates are
part of an ongoing process, these titles

have a proven pedigree.
Basically it's a matter of selecting an

affordable piece of software, looking at
what it has to offer and then trying it
out for yourself.

A File Edit Starch Fornat Stale Print Special
Word Perfect's

thesaurus in

operation
j WordPerfect 4,1 - Doc 1 - LOHEPIHE.TXT I

tear Hr Uaddilove JL

He write to confim jour_
cabin in the Lone Pine Hationa

_ telephone call to reserve a traditions
ark,

Pi 1 Ln 13 Pos 48

new

novel

contenporary,
current
modern

recent lantl

current lal
contenporarg
present
prevailing
up to date
vogue

current Inl
-. draft
l.tiou

BtlTOIilBUPOl
current

Hodern
newfangled
up to date

fashionable
= nod
= .vogue

II, Replace Hordl 12, View Hoc 13, Look Up HorJI H, Clear Coiunn"

Word Writer ST

showing a form
letter for mail

merging

be* File Iptlans lite* Print Tent Marl's Out liner HIP!

Thai* yen fir iiur recent Inquiry, about rar bold Policyholder late
Insurance ptllcy. Ten Kill be happy to knotc that the prenim fir
jtour 5 Hill be to every six ninths. He think that yen Hill find
our rttei to be mich liner thin thit of our cnpetltors, mi our
service Is first rite.

Ti liltlite tiw Mllcy, Just cill 7 in our a office, Tie panne
there Is 3,

Think DM i|ila far contactlm Cosnopalltaa Hutual ,h\

Wordprocessor Supplier Price Wysiwyg Operation Spell-check Thesaurus Mall merge Preview Microjustification Pseudo DTP

TextPro Precision £39.95 No Gem No No Yes Yes No No

Word Up HB Marketing £59.95 Yes Gem No No Yes No No Yes

K-Word 2 Kuma £59.95 Yes Gem Yes * Yes No No No

1st Word Plus GST £79.95 Yes Gem Yes No Yes No No Yes

Word Writer ST Timeworks £79.95 Yes Gem Yes Yes Yes No No No

Protext Amor £99.95 Yes Non-Gem Yes No Yes Yes Yes No

Word Perfect Sentinel £228.85 Yes Both Yes Yes Yes Yes Yes Yes

77?e facilities of)'ered by the lop wore' processors for the i 7"
|* Avalable as a separate fesk accessoryl

The next step in word processing

A\ File Edit Block Layout Style Spelling Graphics Help

B!\DflgSVr|f|
M:\F0RHflTS\F0RHflT.DOC-:

Li l i i i ii i 1^1 i i 1^1 i i i^i i mU| i i i^i i i i

TIGER AT BUY
A runaway tiger Mas last night
caught by local zoo-keeper,
John E, Morris, after
terrorising the backstreets of
Hazel Grove for nore than three

days,
The wild cat was ensnared while
taking a bite out of a petrol
pump at a local garage,
How returned to its rightful
place in the Harrods toy
departnent, local residents are
said to be relieved,

Thepseudo DTPstyle of 1st Word Plus

[•lu t T*j aIVja] a* I »j ja>io\.

Wysiwyg: This determines whether
the screen display matches the output
you will get on your printout. Such a
display gives an easier indication that
what you are typing is what you really
want to achieve - something which is
not available on dedicated stand-alone

word processors.
In all cases - with the exception of

Protext - this is standard on the ST, and

such displays may or may not show all
margins, headers and footers.
However, even Protext has the facility
to toggle to a wysiwyg-type screen
display.

Operation: Most software is primarily
operated via the mouse, making use of
an on-screen menu to quickly select
various options - though typing is of
course still via the keyboard. The style
of this operation varies enormously
from partial Gem loyalty - which can
make word processing a little clumsy -
to full implementation of Gem.

While Protext makes no concessions

to this mode of working and as such is
similar in use to a stand-alone word

processor - Word Perfect allows both
an orthodox keyboard approach and a
flexible Gem usage.

Spell-check: This refers to the
inclusion of a spelling checker diction
ary which will selectively or globally
search and correct spellings in your
text. These facilities may be available
within the program or loadable from a
separate disc. If separate, then the die-

sor fe

tionary is often larger, though spell
checking may be slower than with a
smaller glossary stored in the word
processor program.

The size of these dictionaries varies,
and includes 1st Word Plus' 40,000

word tome and Pretext's hefty 66,000
which is more than adequate for most
small business purposes. In many cases
these dictionaries may be supple
mented as new words crop up. For
instance, 1st Word Plus and Protext
allow user-created supplementary dic
tionaries - particularly useful if you
wish to store spellings of commonly
used technical, foreign or medical
terms. Protext also includes a quick
checker for the 10,000 most commonly
used words, which is fast and impor
tant for. checking spelling as you type.

Thesaurus: A few packages also boast
a thesaurus which will aid searching
for synonyms. This is particularly handy
if writing is the core of your concern or
if you need to express yourself lucidly.

Once again this addition normally
has to be loaded from a separate disc
before a selective search and replace
can be put into operation.

Mail merge: This almost universal
facility allows you to quickly merge
data from spreadsheets and database
programs into your text for many pur
poses. By transferring names and
addresses from a database it also per
mits the production of macros - or
form letters - to mailshot customers

and suppliers. Each letter can also
include its own personalised unique

message, address and name.
This speedy process negates the'

need to write the same letter to dozens

or even hundreds of clients, and is a
professional time-saving boon to all
progressive businesses.

Preview: This indicates a facility to
allow you to see accurately on screen
what you will receive on your final
printout. It is particularly helpful with
the non-wysiwyg display of Protext,
and is also a useful addition on other

word processors such as TextPro as it
gives a clearer indication of the finished
product than a straightforward
Wysiwyg display.

Microjustification: A most advanced
addition which will create perfectly
balanced lines when right justification
is chosen. It creates microspacing
between letters, allows for varying
sizes of characters and alters spaces to
create an almost typeset feel to your
work.

Pseudo DTP: If home produced fly ads
or graphically enhanced mailshots are
called for, some word processors can
emulate a pseudo desktop publishing
environment. They do this by allowing
inclusion of home drawn or imported
graphic images into your text.

Such an environment will also allow

you to columnise your text to produce
a newsprint type layout - hence the
term desktop publishing. Though these
pseudo facilities are useful for many
business concerns, none possesses the
power and flexibility of a dedicated
DTP package.

~

Keeping account

What is a

spreadsheet?

YOU are probably familiar with ledger
sheets used by accountants for making
balance sheets and profit and loss
statements. Well, a spreadsheet is an
electronic tabulated worksheet which

can be tailored to produce and monitor
cash flows, depreciation charts, end of
year ledgers and much more besides.

Not only is it capable of cross calcu
lation of cash data, but it can also be
used to classify and manipulate non
monetary arithmetic data, such as test
results of students, IQ scores, cubic
metres of earth dug each day by a
gang of workmen and so on. Figure I
shows an example.

A spreadsheet is made up of a large
number of cells - boxes - organised in
rows and columns. These can contain

numbers, text or calculations - in fact

anything you care to put in them.
An average commercial spreadsheet

program - which may allow up to
65,500 rows by 65,500 columns - can
cater for 4,000,000,000 cells. That's if
your SThad the memory to store them.
The fact that you would never need to
use anywhere near that amount of cell
space is irrelevant, but it proves the
sheer power of a typical package of
this sort.

The joy of electronic spreadsheets to
the businessman is their speed and
ability to answer "What if?" questions.
They can be constantly updated and
altered - usually using an Edit
command - without resort to writing
out each sheet from scratch.

When one of the cells is changed it is
reflected in the state of the others, so it
is easy to predict the outcome of cir
cumstances like increasing sales, over-

IFyou run your own business, no matter how large or small, you
will at one point or another have to deal with your accounts.
Whether you simply keep a day book, produce a cash flow for
the bank manager or provide end-of-year ledgers, a micro will
smooth and speed the process.

As you probably know, accounts and accountants are expen
sive and time consuming. Using an ST and a powerful spreadsheet
and accounting package will help you with these often tiresome
procedures and also enable you to run your business more
smoothly and efficiently.

There is a bewildering variety of packages on the market, and
some are very expensive, so we'll take a brief tour of what's
available and the features you can expect them to contain.

861
862
883:HEQUE DEBIT

166861 54,38
569858
186682
186883

188885

28,86
45,88
168,66
66.66
12,88
42,88

168688 15,86

Mini Office ST

CREDIT DEPOSIT BALANCE DETAILS OF TRAHSACTIOH
188,88 OPENING BALANCE
45,78 RENT

623,88 8,88 668.78
648.78 RATES
683.76 FOOD
563,78 VISA
437,78 TELEPHONE
425.76 DRV CLEANING
383,78 ELECTRICITV
443.78 SHARE IHCOHE
128,78 •Umilil'lb^W

8,88
8,88
8,88

8,86
8,88

68,88

m

Figure II: Mini Office Professional- a good Gem-based spreadsheet

drawn bank balances, cash flow
problems and so on. Basically the sheet
can be manipulated to provide the
set-up of information which is required
for your business.

Further to this, their global calcula-
tory functions enable you to quickly do

tasks which with a pocket calculator
would eat away at valuable business
time. They are also cost saving, as they
let you carry out many of the weekly
and monthly accountancy tasks which
you would otherwise have to pay an
accountant to do.

A File Edit Input Forwat Options Graphs Figure I: Tabulation of test results is easy
with a spreadsheet such as G/entop's
Graphic sheet

71

Hi
in

TF

Spreadsheet

T 5

TITLE SCORE lj SCORE 2 SCORE J SCORE « SCORE 5 TOTfi
_ i "in or" m xer 'us IO

' 1 278? J.8'8 "188 "T.88 5.88 1578
T" OS" W lol TlTTOJ IQ

R' 5788 7788 6788 F™ rm « a
• or as ~w

r; TIT 188 17i
t ?.88 m 5:1 m

It fffi- 471 7781 TM
1 WW 18788" 18.18" I87H

• "K"'"'' """'"; 08 Of

8788 JO
t™ « a

r*

"FUsTTT
1ST

A file Edit Input Farnat Options Graphs

1 57
T78

Ml

T, T78F 4701
7788 1781

Figure III: And you can output
the results in chart form

Graphics
0r3cl i r!3c7 Oriel i r!3c7

Graphics I

|
i

! (i
1 I i

1 ! «

i j
M

J| 1 i ii
,7 7

J 1
ill
ill

8

Keeping account

What's available

IN addition to varying speed and size,
these packages can differ in many
ways. One is whether they are Gem-
based or command-driven. Mini Office

Professional Spreadsheet, shown in
Figure II, is a good example of the
Gem-based variety. The pros and cons
of operation reflect the same argu
ments in the word processor section,
but command-driven sheets are rare

for the ST.

if you are unfamiliar with com
puterised spreadsheets a Gem-based
one will be easier to get to grips with
than a command-driven one. However,

once you get to know a command-
driven one it can be much faster and

flexible.

The second difference is whether or

not they support graphics to allow you
to print out graphs and charts from
your accounts or statistics. These are
handy as they can give at-a-glance
updates on your commercial progress
or forecasts. Glentop's Graphic Sheet
provides some excellent graphic func
tions, as can be seen in Figure III.

Some spreadsheets also provide
facilities for on-screen calculators and

notepads to enable you to perform
related tasks while updating .your
sheet.

In the public domain, spreadsheets
and accountancy programs are as
bearish as their word processing rela
tions, but by necessity of their size are
limited in their power compared to
their more expensive big brothers. VC
Spreadsheet - available on Softville's
ACC.23 disc - is a marvellous

non-Gem but highly usuable spread
sheet.

Meanwhile ST-Sheet, available on

Softville's ACC.31 disc, is a Fast Basic
spreadsheet utility that can be used as
a stand alone program or as a desk
accessory. Also available in the PD
market is a superb accounts/spread
utility to be used within the ST Writer
environment.

Ifyou require slightly more flexibility
and power for ledgering and day to
day accountancy, Kuma's K-Spread and
Digita International's Digicalcare inex
pensive and user-friendly entry level
spreadsheets which hold a half-way
position between the PD sheets and
the lucrative master packages.

Desk File Systen Account m
*1 ^

1 Report
nual Transactions : ~ =

Account: Midland Current ft/No. 123-456-78 Opening Balance: 386,88
Date |Type|*| Details 1 Debit Credit Balance

2 Jan 88, SAL Salary
6 Jan 98 rllSC Cash Hachine

752.69
58.66

15 Jan 88! HORT * Hortgage 268 68 188,88
28 Jan 88 IRAN * Tsfer to account HD 48 86 68,66
21 Jan 88 CL Chq 3421 Srtiths Ltd 28 99
15 Feb 98 HORT * Hortgage 266 66 -148,68
28 Feb 88 TRAN * Tsfer to account HD 48 88 -188,88
15 Har 83 HORT * Hortgage 268 68 -388,88
28 Har 88 TRAH * Tsfer to account HD 48 88 -428,88
15 Apr 88 H6RT * Hortgage 288 68 -628.86
28 Apr 88 TRAH * Tsfer to account HD 48 66 -668.88
15 Hay 88 KORT » Hortgage 268 88 -868.88
28 Hay 88 TRAH * Tsfer to account HD 48.88 -988.68

M 0 EXIT Update Enter fy w

Jperesi'. J 1

Figure IV: Bank statement produced by Digita's Home Accounts

Desk File Systen Account || i 1 Report

udget Details =====-~-—".—=======

Type | Ace | Jan 1Feb 1Har 1Apr 1Hay 1Jun i Jul I Aug 1Sep 10:t I Hov | De> ™ ov;Us

CL HC 188 58 58 75 68 68 68 68 68
HK HC 158 158 158 158 158 158 168 168 168
HISC HC 198 189 188 188 189 158 158 158 158
HORT HC 288 288 288 288 289 288 288 288 288
PTRL HC 58 58 58 58 68 68 68 68 68
SAUE HC 48 48 48 48 48 48 46 48 48

68 75
168 166
.18 118
286 28E
68 ii
49 46

75 785
166 1868
118 1436
288 2488

68 688
48 488

6
8

8

M 0 EXIT Update Enter 0 w

jBj£>«"

Figure V:Budget details produced by Home Accounts

Also available are some excellent

general accountancy packages such as
Microdeal's Personal Finance Manager
and Digita's Home Accounts. These
allow you to construct, tabulate and
print many everyday accountancy
tasks, such as bank statements -
shown in Figure IV - and budget
details - shown in Figure V.

At the top end of the market the
packages are many and varied. VIP

Professional is a very powerful but
expensive Lotus 1-2-3 clone - the
standard spreadsheet by which all
others are compared in the IBM PC
business world.

It is therefore best perhaps to begin
with either a public domain or cheap
spreadsheet then to decide for yourself
what you require of a master package.
The table summarises a cross-section of

the best packages available.

Guide to Spreadsheet and Accountancy p ackages for the ST

Spreadsheet Supplier Price
Graphics

mode
Operation Package type

VC Spreadsheet Softville PD No Non-Gem Simple spreadsheet

ST-Sheet Softville PD No Gem Simple spreadsheet

K-Spread 2 Kuma £59.95 Yes Gem Spreadsheet

Digicalc Digita £39.95 No Non-Gem Spreadsheet

Graphic Sheet Glentop £49.95 Yes Gem Spreadsheet

Mini Office Spreadsheet Database £29.95 No Gem Spreadsheet

Home Accounts Digita £29.95 Yes Gem General accounts

Swiftcalc Timeworks £79.95 Yes Gem Spreadsheet

Personal Finance Manager Microdeal £29.95 Yes Gem General accounts

BAS Accounts BAS £195.00 Yes Gem General accounts

Master Plan Silica £89.95 Yes Gem Spreadsheet

VIP Professional Silica £228.85 Yes Gem Spreadsheet

w

(jetting1mi

••• •
A simple

price list

SO far we have looked at the basic

principles of spreadsheets and how
they can prove invaluable for small
business purposes. Now we will take
the next important step and observe in
more depth how you can make these
electronic accounts sheets work for

you in given situations.
Most spreadsheets for the STwork in

similar ways, but they all have their
own quirks and exclusive peculiarities.
To explain some simple operations and
calculatory functions we will use
Glentop's Graphic Sheet and Kuma's
K-Spread 3 as our working examples of
spreadsheets in action.

To give you an idea of the saving in
time - time is money in business - and
effort that a spreadsheet and ST can
bring, we'll work through a couple of
simple examples.

Any STspreadsheet will allow you to
construct a price list like that shown in
Figure I, instantly to calculate VAT and
mark-up which can be constantly
updated. Bear in mind however, that
the actual mechanics for doing so will
vary slightly depending on which sheet
you use. For simplicity we will
temporarily ignore VAT and look at
how, using K-Spread 3, the price list

was made up.
The first stage is to boot up the

spreadsheet which should load with
the edit cursor - the small oblong box
- located in the top left hand corner of
the sheet (cell A:0). Now your first
tasks are fairly simple as you enter the
column headings along row number
one, pressing the right arrow after
each heading has been entered.

However, you will notice that the
heading Part Number partly disappears
as you enter the next heading Title.
This is because the first label was too

long for the default width of the cell, so
you will need to widen cell A:0.

This is a simple procedure: Locate the
mouse arrow on the bottom right hand
corner of A:0 and press the Alt and left
mouse keys simultaneously. Now drag
the arrow towards the right, release
the key and the cell will have been
widened to accommodate the words
Part Number.

Now you are ready to enter the part
numbers. To save typing time, sequent
ial part numbers can be generated
automatically using a FILL command in
K-Spread 3's Options Menu.

To do this, select Fill Range from the
Options menu. Choose the range of
cells that you wish to fill by entering
the parameters A1A10 into the Range
Dialogue box - shown in Figure II.

Now click on OK and Select Fill by
Column by clicking on the downwards
facing arrows. Choose the starting and
finishing points of the part numbers, in

this case 1001 and 1010, then select

an increment of one. This procedure
can be clearly seen in Figure II. The
incremental part numbers will now be
displayed in column A, rows 1-10.

The next important step is to set up a
template for generating the price list.
You will see at first hand the calcula

tory speed and power of an STspread
sheet as it automatically works out
selling prices as cost prices are entered.

The percentage mark-up should be
entered into cell Dl. For this example
we assume the mark-up to be 50 per
cent, so 1.50 - one whole plus 50 per
cent - is entered into cell Dl. The

mark-up is standard across the product
range, so this figure can be copied
down the mark-up column.

To do this, select cell Dl by clicking
on it and then drag it to the column
header. Enter into the Range Dialogue
the parameters 1:10 and press Return.
The markup 1.50 will now be copied to
the relevant range.

Now you must set up the formula to
perform the calculations, the object
being that the spreadsheet auto
matically works out the selling price in
column E by multiplying the cost by
the mark-up.

Next enter some sample prices into
column CI and enter the calculatory
formula C1*D1 |cost times mark-up)
into cell El.

The formula can be copied down the
sheet by selecting and dragging the
cell onto the column header, entering

A File Options Data Hindow Dbase Print Global

—-iiFn:Tr!0plLQ|Tn|DbiFi|Sl|S2IEx||LUiGUi.lH/H BaaaaBE

I File

M".

SHEET

C. E'lT

¥1 =1TTT-

F8 : E : F8..F8 :

Figure I:
A simple
price list
created

using
Kuma 's

K-Spread 3

D

FR.IHTEF:

SHEET

Data Hindow Dbase Print

gnraTHi&birii5ii55iFxyLui^uyn>Ry Label gUB

Fill Details,,

Start • 1881

Increnent i 1

Finish : 18181
i

I M I I CANCEL I

IHIES fiSS/REL

Fill by,

rs [TS
ijOTO iTRACE QUEF: L-^l

TTtTe

AJraser. 88 Pen
LBflClip
4,88Pencil
5,88Card
6,8fRuler
7.88'Pin.
Uradse
iihner

oCraaon

m

Cost Markup
4 "
1

l
1,

Price

it ?
I, m 4
L
1,

If 12
1, !$ $
I, iff 6
1, || J
1.
1. >«; iZ

5,8
111
4,58
5,88
6.58

rf^

AFT

nli RECALL G. REOiwC ft. LOCI

fECFILC G RECflLC ft,

Figure II:
The Range
Dialogue box

m

-^P^

paiepdn
Ai/eDijeuiojne
aquejudiuaa

luatuaieis

yueqa/qixay

WAI3Jh6y

WMMSSMmtmnwiMmowmm
ieqo]rjmujaseqqjjopuijjej-eq,suoudfja]ij\<fI

11.
J.I..

..him
,.IL

IT...
0T

miL..Mmiusiancsou;:i?i:m.

Kl\
OOL

•|_IUL

MMiLSSffl.'l...
JUL
JOL

iUL
SLSL

..Jin..

:ij!.i...
JUL
Ji'it
M'g

sajejijjofl

»i ^VII.MhIhI

"lintjuajj
taaqSDiqdejQ

s,dojua/£)Bujsn
pajeanjaBps/

sasuadxau\/

•IIIsjnBy

mmit'-ii.-
.It'll.

ts..:.ii...
fiEL

.1.

JLJL
Jilt
JI.IL..

,1.:iJL
...711M.1IMilIdHS
JULJO£IUUO;L™$.J±<I

[Ndji^^ii"JEni9ei_"jenueL

s_

sasodjndssaujsnqjuBjjodwi
jojjaaqspsajdsjnoAjoasn|BD|jD6jd
6u|>|bijju|6sqoja6pa|MOu>|ap|SU|
aqinoA3A|6||i/v\jnq'6jaqaD|aqjjo
djlaqiisnfajBsaidwBxaaAoqEaqi

asuBsjjqappubsjjpajDsbauirj

Aub)BAnEDjiBUJOinBpajEpdnaqued
qD|qMjaBsuBLujuawajBjs>(UBqinjja
-ModbaAeqnoAMorxjajojaqsba6uEj
aqi6u(uaspubjapBaquwn|ODaqi
0123IP36u|6BbjpAqguiun|0Dumop
pajdoDaqubdj|'sawnAubluE|nuuoj
aqj6uuajuapjoabox(,,,,3ST3(2a

•ZD)+13N3H10<>ZQ-Z0)i\
aqpinoAAsinuuojaqiasBDsjqiu|

•pajajuaS|ijqapjojjpajDAAaubuaqM

aauB|BqaqjajB|nD|6DA||BD!JBWojnB
oiB|nauojbdniasubd3/\aspjbmuo
ZMOyLUOJJpjBMJOJJq6n0jq3DUB
-|Bqamaqhim[moj'3uuin|0Du|

sjaquinu3siu6od3jAiibdjieuj
-ojnesjaaqspeajdssbAjess3D3u
s\6u!JjeuuojsnojAajdouajojajsqj
'sjaqwnuaq|||m-suwn|0Djjqappub

jjpajDsqj-apub3suiun|03sisqsi

seacujiS(qj-AemaoiBSaqjuanai
u|pauBLUJOjajdaqubdauiunio^

JBOIJOJ3JBpOJU|A||BDpBUJ
-ojnspajjaAuoDaq|||aavuain|OD

oiujpajajuabjbpAubpueajnpaaojd
uaajDS-uoaidiuisbaaohojuojjnq
ajBajDaqjuo6u(>p!pAqpubnuauu
BiBfjaqaujojjjBLUJOjaJd6u|jDa|as
Aq|aqB|esepaiuudaqAbluajBp
aqiJajB|pappBaqojejBpjojssau

-IPBajuiaauBApBu|jaaqsaqidnjas
01noAsmo||B£pEajds-x'sjaaqspBajds
ISjaqjojsolua^r\vuoinioau|As|ds|p

XJ_i_LX

sijdejn,suoitdQje-mjqjjndu]jip]am

aiBpaqjaujjapajdisnoinoAmon
TuaoiajEis>(UBqjnoAuo

paanpojdajBAaqjsbjsuubluauiBSaqj
ui'ajopqsbspBjapBuipBaqaqijajug
apBujaqubd)Bqj>|DaqDaidLUjSjoadAr
aqijouo|jBD|pu|ubsaA|6Alajn6yui
pBajdsamjunoDDE>|UEqssaujsnqjo
juajjnDjnoAuoaAaubdaa>(ojjaaqs
easnpojd01A|>p|nba|q|ssodosjbs\u

juhoddb>|ui?qjnoi

jo>pi?jj6uid33>|

w\ojq3Ea}opua

aqiIES|bjojAjo6ajBDMoqso)smoj
aqjjojpapmjsuoDaqubdEinuijoj,

jeijuiisv'sqiuowasoqajojS|bjoj
aqjajB|nD|B3ojpaidoDpubsqjuouj
11jaqioaqjojuoasnouiJnoAqj|M
pa66BjpaqubdBinuuoj,auiBSs\m

ea'iid
||3D3SBDSjqlU|'||3DP3JIS3P3qTU|S3S

-uadxaAiqjuotujojibjoje3A|6hjmpub
AjBnuErojp3||ddEsqA||njss3DDns||i/v\
Binuuoj34136ueje6uuBD!pu[:jsjdej
-BqDsqj'(ED6ii:EDea)lAinS=Sjqj3>|!|
U3T1UM3qUBDJ|J33qsDjqdBJOL)3t/X\
(EUOiniOD'6AAOJ)£36il03(£ULUn|OD
'£moj)foeya6uBjaqjAqpsjituusp
S|AjBnuBfu|pspnpujS||3Dhejo
uinssqi'3DUBJSU!jojs||aDjoa6usjb
jojBinujjojb6u|jj3SAqauops;sim

w\ojqDBajopuaaqjjbsasuadxa
AjoBsjbdibjojpusuujn|0DqDB3jopua

aqjjbsasusdxaA|qjuoujibjojajB|nD|BD
UEDJ33qSJnoA'S||3DJO36uBJB6u|D
-U3J3J3JIpajjsapuaqMpussbpajajua

aqubdiijuouiqDBau|Ajo6ajEDqDBa
jojsajn6|jasuadxajuBAaiajaqjuaqi

Ajjua

qDBajajjBujnjayssajdjsnujnoAjaaqs
DjqdEjQqj|M6u;aqaDuajajjjpA|uo
aqijsjiaaudaqjjojuiaqjpajajuaam
AemagjojuojqsBjjbijujiseu|pajajua
aqubds6u!P6aqmojpubuujn|OD
aqiajB|dujajjaBpaibjDmjsuoDubd
noAjaaqsDiqdEJ96u!snpassnDS|p
ApEaj|Bsaidpuudaqjjoaiuos6u|sn
Aqdnjasaqubdmajn6yUjuMoqs
auoaqja>i!ija6pa|sasuadxa3T,j|ajisv

ja6pa|

sasuadxauy

yuujn|ODu|aDuda|BSwau
baA|Bojuo|jB|nD|BDpapuajxaaqjaA|6
pinoAAi3*ia»ojoBinujjojbuaqi

Sl'li°dn->|jBujivajo-3uujn|OD
ojujaDUd6udjoj'3uujn|ODu|Abs-
uuinioDBjjxaubppsojpaauA|uonoA
'liaMsbdn->)jBLUivaapnpuj01jaaqs
-psajdsj_subjosjaModAiojB|nD|BD
aqjjoa|diuBxaaidLUjSA|J|bjbS|S|qi

•3uain|ODu|pajajuajsod

aqjujojjaDuda|BSbnoA6u!A|6'moj
qDBassojdbA|jd3jjodA|dainujojjaj|B
A||BD!jeujojnBhjmBinouojaqiujnjaa
bujssajdpubajojaqsba6uBjaqj

SJ99LJSpi?9jdsOJUIBUIIIBO

01

^

_

Getting things sorted out

ANY business worth its salt will need to keep track of Its suppliers
and customers. This can often be a laborious process of making
and updating hand-written mailing lists and directories of impor
tant phone numbers. However, all this can be simplified and
speeded with the aid of your ST and a database program.

A database or datacard program will allow you to create a
filing system on disc of Important information which can then be
quickly and easily accessed, updated, searched and sorted as
required. Total or selected information can then be output at will
to your printer.

A typical public domain database program will allow up to
4,000 quite detailed records. Even this hefty number can be
increased by sub-indexing on a number of separate discs. For
example six discs can contain 4,000 records each - totalling
24,000 records in all.

The commercial equivalents have even more breathtaking
capabilities, allowing calculatory graphics effects such as graphs
and pie charts, and data storage of over 40,000 records in one
file. And some of the more recent professional database pack
ages - for example, Superbase Personal - allow single files to
contain up to 999 Indexed fields (specified lines of information).

Add to this the fact that individual text fields can have a limit

of more than 250 characters - even greater with some software
when importing data from external packages - and you get some
measure of the power of a top notch ST database program.

Databases

THEjoy of an ST-run database program
is that you can store your own per
sonal database filled with any infor
mation you like on one small 3.5in disc.

Such programs are ideal for storing
customer and supplier names,
addresses and telephone numbers as
well as intrinsic business details rele

vant to each business client.

Figure I shows a typical page from a
simple datacard - a smaller and less
powerful brother of the fully fledged
database - program. Of course, exact
record details can be briefer or much

more detailed than shown.

Once you have compiled a database
of records you can search quickly for

any selected piece of information. For
example, imagine you wish to con
struct a list of all suppliers of a par
ticular product in the county of Sussex.
This can be achieved by operating a
simple Search command, for the string
"Sussex".

Equally you can sort your data into
either numeric, date or alphabetic
order by using a standard Sort
command. Most commercial database

programs also supplement powerful
search and sort facilities by a process
known universally as mail merge.

This allows you to merge data you
have collected into a compatible word
processor to produce address labels,
macro letters, forms and other
duplicated mail that needs a personal
touch. This saves time which would

have been formerly spent on

repetitious duplication of names and
addresses.

Such merge compatibility exists
between several products, such as
Kuma's K-Data with K-Word 2, and

Timeworks Data Manager with Word
Writer ST.

Simple database and index card pro
grams are also freely available. Some
allow field size - length of each line of
information - to as many as 3,000
'characters.

It is worth scanning PD Software lib
rary catalogues for some existing sam
ples such as Database I. In addition,
programs such as B.Bytes' B Base 2,
shown in Figure II, costs less than £15
and provides good cataloguing facili
ties and room for up to 7,500 names
and addresses on a double sided disc.

lijjj Secondary search Henu. Record 28 out of 181 =======s=s

Dire Straits
Brothers In Arris
Vertigo 1985
824 499-2
Cortpact Disc
l.So Far Auay

Honey For Nothing
J,Walk Of Life
4.Vour Latest Trick

Wig Horrg
6,Ride Across The River
1, The Han's Too Strong
B,8ne World
9,Brothers In Arris

Figure II:
A completed
single record

using B Base 2

Figure I:
A typical
page from
a datacard

program

=== Secondary search Henu, Record 68 out of 182

1r & Mrs J, Soap
18 Letsby Avenue
Tinseltown
Jest Sussex
4R5 BBB
Tel: 65(8 345B
Orders to date: 14
Invoice date: 23rd of nonth

11

12

Getting things sorted out

JKi Control

Display 1 of 183, Scroll by Record
Country
Capital city
Continent
Clinate
flccess-to-sea

Population :::-
Religion JChristian
Kingdon lyes

Bordering countries:

'Flag description:

Fl

REJECT SELECT
• F4

't •SOB

Figure IV:
An index

of data files

Usina a database

Filling in a database with the infor
mation you require is a simple and
speedy task once you become familiar
with a few procedures. After you
decide what type of information you
want to store you must construct a
format to hold that data in an ordered

and clear manner.

Imagine you want to create a name
and address list of business clients.

Think of the data format as a form that

you fill in for each of the people on
your address list. This form would have
a line for each piece of information
about one person on the list, and each
line would have a title so you would
know what to write on that line as in

the following example:

First name:

Last name:

Address:

Town:

County:
Postcode:

Phone:

Business name:

Product:

Each of these lines is called a field.

The data format shown above consists

of nine fields. With most database pro
grams you can specify the type of
information you want to store in each

Figure III:
A completed
record using
Data Manager
Professional

JO
1\\ uuiurui

eriaiiU

aaHaiMaaHHaaMIMHMaMaaaaaIBaMMaaaaaaMaaaaaaaH

MMOaI
ill

: Fi

REJECT
F2

SELECT
F4
SORT

F5 F5
INPUT flHEHD

field. This can be either numeric - num

bers only - or textual. Some databases
also allow fields to contain alphabetic
data - single letters only - or calcula
tory form.

Due to the nature of the way the
program sorts, information sorting will
be quicker and easier on alphabetic or
numeric fields.

Not only will you be able to choose
what type of information will be stored
in each field but you can also designate
how long each field will be. However,
due to memory constraints it is usually
true that if you increase the length of
each field you decrease the number of
records the database can hold.

When you fill out your format for a

F7

COPV
F6

VIEH

F3
SCROLL

FW
ACCEPT

single person on your list you create
one record. Each person's information
is entered into a blank copy of the
format, much like filling out a separate
card for each one and keeping it in a
card index file. An example of a
completed database record using Data
Manager Professional can be seen in
Figure III.

The only difference is that when you
finish filling in one record it will be
stored in the ST's memory and can then
be stored on your data disc.

Each record is numbered by the pro
gram in consecutive order. A group of
records is called a data file. An index of

records on part of a data file is shown
in Figure IV.

Product Supplier Price

B Base 2 B.Bytes £14.95

Mini Office Professional Database £24.95

Data Manager Timeworks £39.95

ST Organiser Triangle £49.95

K-Data Kuma £49.95

Data Manager Professional Timeworks £69.95

H&D Base Silica £99.95

Laserbase ST Laser £99.95

Superbase Personal 2 Precision £99.95

dBase II First Software £119.00

BAS Database BAS £138.00

dBMan Atari £194.00

Superbase Professional Precision £249.95

Some common database packi ges for the ST

^

Electronic filing

WE have seen the range of data
base packages available for the
ST and looked at examples of
their flexibility and speed. The
strength of an ST run database is
that you can store your own
personal filing system filled with
any information you like on one
small 3.5in disc.

A database - database man

ager to use its correct termi
nology - can save a business
important time and money in
such previously laborious tasks
of collating and updating mail
ing lists and directories of
important phone numbers.

However, like any business
software package, a database
manager can be difficult for a
beginner to come to terms with,
in its manipulation and overall
working.

Here we look at how to start

getting your database to work
for you.

A database

LET'S conduct a simple tutorial to give
an insight into the direct workings of a
database manager program.

For simplicity we will use the ever
popular and industry standard Data
Manager by Timeworks. Though other
packages may differ slightly in some
respects, most of the terms and meth
ods used are universal.

, t You will need, not only the program
disc, but also a blank formatted disc for
your records (data).
0 Load the program disc in the usual
way.

• When the program is loaded click on
the Cancel box, as we will be creating
a new data file.

• Move the cursor to the Options
menu and select the Create New

Column menu.

• Enter the title Customer Number for
your first field in the dialogue box -
seen in Figure I.
• Now click on the Text box and this
will set the type of data we wish to
store. Click on OK.

• Create the second field by selecting
Create New Column again. Enter First
Name and click on the box marked

Alphabetic to select the type of infor
mation - as you may wish to sort this
information into alphabetical order.
• Now enter your third field in the
same manner and enter Last name as

the field title. Once again choose
Alphabetic as the type of data to store.
• Enter four more fields in a similar
manner and title these: Address, Town,
County, Post Code. Select Text as the
type of information in all cases - even

Desk File ||&i! View Sort Print HELP!

UNTITLED!

DEFINE THE COLUMN

-TiH«T Custoiier Nunber' 1
•'••• -.. ^TT^T-^TT

igpe 3t:;|aM^SU&flB^ Alphabetic r:.\

---. ^_:f1 Huheric ; Calculation r.V.
i—.,—„„.-........_.......

==•^.^==-1 Ves/No !" Tine 1 Date fta
.-" :' T7iI~I "'

:~~":"^Ft^£^£"-. i porh Title : Vour Fornat B

I' If I 1CftHCEL 1

£
fiTfs i b |

f<m 1 copy LsbiELI
F4T

ML-Li
F5

UNDO IMMLC
F8

JH£.
F9

JSB-

Figure I:Defining a column using Data Manager

1

4.1

flSE/lISE.

Desk File |i m to Sort Print HELP!
ft 1 r=_—

_CJ 1—u 1 t_u. _ i i i t n n

Code. I
'

• _••

NUHERIC COLUMN FORMA
i !; '
'

^i« r—!HftX.---7:C1̂ 7 II 3 HI 1 : itatai :! '

• t: \

6 '

j| ,-¥•—:r-:T~GEELT " fxxx
H£xxx !|

7:7-;";'-p •-_ -: -...:. .. •.. (I
mmmwiLLLM [

• \ -1 -ffiCHftf iQjujm EHH •\ "'
—=—~~-7r-

MEEm
mx- || : :

1 .:-..: • i
,

==:==== EE^-£~:T.-Tf~ IBS

• .\ mm i: ! \
<•!

U=^7T--~
4 I

UH Fran COrr i UESIFY i MC .KCALC III 9 1 uk - - r-
NTT wniifHK

1

Figure II: The numeric dialogue box

Desk File Options Uieu Sort Print HELP!

UNTITLED!

.Custoner Nunber.First Nane.Last Nane,Address,Town,County,Post Code.ConpleteejL.

Figure III: The field titles as saved

14

Electronic filing

though post codes include numbers as
well as text.

• We will now enter the last field

name as Completed Orders. As this is
numeric it will require one more step
than the others.

A dialogue box will appear - as
shown in Figure II - which will ask you
to specify a number of digits - select 4
- for the field and a number of decimal

places at the right of the decimal point.
We do not need any decimal places

with completed orders, so click on the
0 box before clicking on OK.
m rour file should now look like the

screen shown in Figure III.
• It is a good idea to save the file
format on your blank data disc. Do this
by placing your formatted disc in the
drive and select the Save As option
from the File menu.

• When the dialogue box appears,
enter the name TUTORIAL.DMF -

Tutorial Demonstration File - for your
new database and press Return. Your
format will be saved on disc.

• Now you can begin inputting data,
thus creating records for your data file.
To begin adding records move into
what is called the Form Style display by
selecting Form Style option on the
View menu.

• You will find the cursor is placed
after the title of the first field. Enter

1001 and press Return. If you make a
mistake, use the cursor keys to move
through the field and type over the
error.

• Now enter the name Julia in the

FirstName field and press Return. Then
continue entering information in this
record using the example input below.
Remember to press Return after each
entry:

Last Name: Smith

Address: 24 West Street, Blit Village
Town: Megatown
County: Middlesex
Post Code: ME4 6AT

Completed Orders: 15

• Your completed record should now
look like that displayed in Figure IV,
again it is a good idea to save to disc at
this stage.
• If an entry is not entirely visible in a
particular field, use the mouse to drag
the field to the right, thereby enlarging
your information entry area.
• Enter a few more records in a similar

manner, using any information you
like. Then select the Save option on the
File menu to store your database
format and records on your data disc.
• Now experiment with your sample
data and the options in the main pro
gram. Try deleting a record, modifying
a record or performing a search. Don't
worry, you can't harm the sample data.

Hopefully this will get you started
and help you learn a little about the
inbuilt processes of a database
manager.

In turn it will give you confidence to
use some of the more powerful facets
of databases such as calculatory, mer
ging and graphics routines.

flddress|24 Hest Street, Blit Uillagel
Town iHegatoun; -
CountyiHiddlesexr
Post Code HE4 6flT_1_
Conpleted Orders 131

Figure IV:A completed record

P

GLOSSARY

Backup A duplicate set of data to be used in case the original
is lost, destroyed, or accidentally altered.

Character A single letter, number, symbol or space.
Chronological Information sorted by date.

Classes Created by extracting certain information from the
main datafile by applying a rule or definition. The rule
acts as a filter, extracting only the information which
meets the specification. Sometimes known as a sub-
datafile.

Data The information you enter to be processed.
Database format The arrangement of data within a record. The format

can be designed to hold data in labelled information
entry lines (fields).

Datafile A complete database which has been saved on disc.
Sometimes simply called a file.

Dataset A group of information designated for drawing a
graph. Each data set includes the numbers and labels
that will appear on the graph.

Dialogue box An on-screen box to enter information or choose

from options.
Enumerated Pre-defined values within fields.

Field An entry line of information.
File A database which has been saved on a data disc.

Match A record found by the program in a Search. The
program matches the data that you have requested
to the data in the record.

Merge Allows you to enter existing data into a datafile, add
records in one datafile to another, or divide records in

a datafile into two by creating two classes. Also
applies to entering existing data into a word
processor program to create macro letters and multi
ple pro-formas.

Record One or more fields linked together like a chain to
form a single specific piece of information.

Report Output of data of your choice to screen, disc or
printer. Reports may be saved, loaded and edited
from disc for future use.

Search A systematic examination for specified information.
Sort To arrange items of information in a desired

sequence.

Verification A process by which the program looks to see if
information has been repeated in more than one
record.

_

_

First steps in Basic programming

IN this section well be demonstrating
how to program in ST Basic, from raw
beginnings up to some of the more
complex features. If you've no idea
where to start, this series is for you

First principles

ESSENTIAL to successful programming
of any sort is to realise that computers
don't think. Surprising as it may seem,
today's computers cannot reach logical
conclusions about anything on their
own. They give the impression of
rational thought by their actions, while
all they are doing is following a
sequence of instructions - a program.

Consider a simple everyday task like
making a cup of tea. Everyone can
cope with this without even thinking
about it. It's the sort of thing we'd
expect a six-year-old to manage. But
just how is it done? In fact we are
executing a very complex sequence of
events - a program if you like.

Try this...

NOTE down exactly how you would
make a cup of tea, in the form of a list.

When you've finished, take a look at
Figure I overleaf. If your list looks
something like it, don't be too
surprised - it contains what most
people would probably consider to be
the important features in tea making.
When it comes to the computer
though, it doesn't have the first clue
about any of this and has to be led by
the hand.

Now consider the revised example in
Figure II. Ask yourself: Is it simple or
complex? It looks incredibly complex,
although it is in fact the first example

broken down into extra stages. The
three items shown in brackets would

normally be broken down still further.
Using Figure II, try expanding the

sections in brackets. How many steps
can you divide the process into?

Getting started

ASSUMING you haven't already done
so - make a copy of the UK language
disc and keep the original in a safe
place. You'll find details of how to
make a copy in the owner's manual
supplied with your ST. Next insert the
copy into drive A and press reset.

When the desktop appears, double
click on the BASICPRG icon - after a

few seconds the ST Basic desktop will
appear. This is made up of four win
dows: Command, List, Output and Edit
with the Edit window hidden under

the other three. The functions of these

windows are:

• Command: The main window. This

is where you will type either direct
instructions to Basic or the lines of your
program.

• Output: Basic will display its results
here - either from a direct command or

from a program.

0 List: This is where the listing of any
program you write will appear line by
line.

The Basic differences

WHEN Atari first released the ST range, the Basic which accompanied the
machines was not quite as refined as the one we know today. Superficially they
seem the same, but the original version contained a number of bugs which at
best were annoying and at worst could crash the system.

These have now been ironed out, and if you bought your machine since
October last year you should already have the updated version. For those who
aren't sure there is a simple way to check which revision you have. After loading
Basic pull down the Desk menu and click on About ST BASIC. If the copyright
date shows 1987 you have the new version.

In the meantime, the more ambitious among you should watch out for
programs which include PEEKs and POKES, or the SYSTAB, GEMSYS and VDISYS
arrays, as these are the most likely areas to cause problems. We'll be going into
more detail about the differences much later in this section when they may start
to affect the examples on these pages.

If you've still got an old version and wish to update, contact one of the
specialist ST dealers and ask them if they can put it on a disc for you.

The full manual is available separately at £9.95, which should also please all
those who received only the small reference pamphlet with their new machine.

What is Basic?

SINCE the very early days of
microcomputers the word Basic -
an acronym for Beginners All-
purpose Symbolic Instruction Code
- has become part of our everyday
computerspeak. Although it's a
very simple language for new
comers to get to grips with, it is still
a very powerful programming tool
- despite the derogatory noises
made about it by computer
literates.

• Edit: When you make mistakes in
your program lines - and you will -
this is where you edit them. It is pos
sible to re-type the offending line but
usually quicker to edit it.

These four windows are, therefore,

Basic's interface with you. Through
them you can talk to Basic and Basic
can talk to you: You give instructions
and receive results.

PRINT

TO show how the two main windows

work, first ensure the Command

window is active. If it isn't just click the
mouse anywhere inside its boundary.
Now type:

PRINT "Hello world!

and press Return. The message in
quotes will appear in the Output
window. If you made a mistake don't
worry, just type the line again.

Direct commands

WHAT you have done in fact is given
Basic a direct command to write the

message Hello world to the screen.
Direct commands are at the simplest
level of program control and the PRINT
statement is one of the simplest com
mands available in Basic. It's used

whenever a program has to display
information or results. In fact it's used

so often that ST Basic provides an
abbreviation - the ? (query). The two
are interchangeable but you would be
wise to stick to one or the other.

The words following PRINT are what
will appear on the screen. They have to
been enclosed in quotes because we
want them displayed literally. If the
quotes are omitted Basic expects to
find a variable - more of those later.

First steps in Basic programming

The List window:

When you list a program
it is shown here

The menu bar

Desk File Run Edit Debug

The Output window:
^All screen output is

displayed here

LIST OUTPUT,

The ST

is a great computer

Dk PRINT "The ST"
Dk PRINT "is a great tonputer"
II

The Command window:

This is where Basic

instruction are entered

1. Fill kettle

2. Boil kettle

3. Put teabag in pot
4. Pour on boi ling water
5. Pour some mi Ik into cup
6. Pour in tea

Figure I:Steps in making a cup of tea

Grasp kettle by handle
Take kettle to sink
Grasp and remove lid
Place kettle under cold tap
Turn tap two turns anticlockwise

6. Wait until kettle full

7. Turn tap two turns clockwise
8. Replace lid, free grasp
9. Plug in kettle

IB, Snitch on kettle

11. liait until water boils

12, Switch off kettle

13. Remove teapot lid
H. (Insert tea bag)
15. Pour in boiled water

16. Replace teapot lid
17. (Put milk in cup)
18. (Pour tea)

Figure II: The tea making steps
broken down still further

Try this...

TYPE the following, pressing Return
after each entry:

PRINT "The ST"

PRINT "is a great computer"

and Basic responds:

The ST

is a great computer

Notice that Basic responds by print-

i The Edit window: This is hidden

\behind the other windows, and
is used for editing programs

PROGRAMMING of any sort is all
about solving a problem - by
breaking it down into manageable
chunks the computer can under
stand. This is true of all program
ming languages - not just Basic.

ing 777/s is first then prints the rest of
the text on a separate line. This is
because when Basic reaches the

closing quote of a print statement, it
also generates a new line. You can
suppress this using a semi-colon (;)
after the closing quote as in:

PRINT "The ST ";
PRINT "is a great computer"

which produces:

The ST is a great computer

Notice the extra space before the
closing quote in the first statement.
Basic only prints what it finds: Omitting
the final space would not produce the
correct result. But don't take my word
for it. Try it and see for yourself

...and this

THE comma also has its uses. When

Basic prints a line it divides it into zones
or fields each 14 characters wide.

These are similar to the tab stops on a
typewriter or word processor. By using
the comma the invisible print cursor

The ST Basic desktop

can be moved to the next available tab

stop. To see this in action type:

PRINT "Zone r/Zone 2"

whi(:h prints:

Zone 1 Zone 2

Notice that the two items are separ
ated by a comma but still form part of
the same print statement. Notice also,
that the second item is printed 14
characters from the border - not the

last piece of text.

Exercises

• PRINT is normally followed by a set
of quotes enclosing some text. What
happens if it is used on its own?
• A semi-colon will suppress linefeeds
after print statements. What happens if
it is placed before the opening quote?
• A comma sends the print cursor to
the next tab stop. What happens ifyou
place more than one comma together?
• Experiment using the comma and
semi-colon directives in different com

binations. Try forecasting the results
before pressing Return.

WHERE computers score a big hit is
in their speed. They execute (carry
out) the instructions given to them
extremely quickly, so even if we
give the machine a lot to do, it'll still
be done at lightning speed.

n

.

_

Our first program

Simple arithmetic

DOING maths in ST Basic is essentially
no different from doing maths on a
pocket calculator. However, the sym
bols used for the various mathematical

functions frequently bear no
resemblance to their algebraic counter
parts, which often results in confusion.
You can see in the panel below the
most common symbols and their
meaning.

At this point you may well be won
dering where the equals (=) sign has
gone. In fact, eguals is used frequently
in Basic, but isn't necessary when we
require an immediate answer.

Let's try some simple addition sums.
Enter the following, not forgetting to
press Return at the end of each line:

PRINT 2+3

PRINT 2+3*2

This last simple sum has two obvious
answers 8 or 10. Basic, correctly prints
8. Why? See the panel below for the
answer.

Variables

IF Basic could only work with absolute
values - 2, -5, 4.5 are examples - pro-

Oh, my giddy Aunt

At school we are taught to evalu
ate expressions using the My Dear
Aunt Sally (MDAS) rule of thumb.
That is, multiplication first, followed
by division, then addition and lastly
subtraction. Not surprisingly, Basic
computes its sums in exactly the
same way.

This system is often referred to as
operator precedence, but it means
the same thing. In the example
above therefore, Basic computes
the multiplication first - then the
addition.

Of course, there are cases when
you need to force Basic to evaluate
an expression in a particular order.
For instance, to do the addition

first. This is done by surrounding
such parts in brackets. If the result
of the previous example was
intended to be 10 then the addition

- which has a lower precedence
than multiplication - has to be
enclosed in brackets. Now try this:

PRINT (2+3)*2

grams would be either incredibly long
or impossible to write in the first place.
To avoid this, Basic enables you to use

' variables. These are similar to the let

ters we use in algebra, but don't worry
if this topic makes your brain itch - it's
much easier in Basic.

You can use almost any combination
of letters and numbers to make up a
variable's name. However, the first

character must not be a number and

only the first eight are unique.
Basic has four types of variable:

Single and double precision reals,

integer and string. For the moment
though we'll stick with the simplest -
single precision real. At this stage,
although they sound quite a mouthful
they're really quite easy to understand.

A PROGRAM is far more readable if

variables are given meaningful
names. For instance, in a program
to keep track of your bank balance
you could call the final amount bal
ance. You can join words together
with an underscore (new ST Basic)
or a full stop (old ST Basic) like
bank_balance, and bank.balance.

which prints 10 as you might
expect.

Brackets can, if necessary be
nested to give some gloriously
complex equations.

For example:

PRINT 1+(((2+3)*4)+5)"6

In practice it's very rare to see an
equation as complex as this. For
one thing it's almost impossible to
read, and for another it's very
prone to errors - for instance, not
enough closing brackets, or
brackets in the wrong place.

Before leaving pure arithmetic,
there are two operators requiring
further investigation, exponenti
ation and modulus.

The table below shows these as

symbols, although you should note
that modulus is a keyword (MOD)
not a symbol, not that it makes any
difference to Basic.

I'll leave you to discover what
they do for yourself.

A • B Raise A to the Bth power (exponentiation)
A* B Multiply A by B
A/ B Divide A by B
AMODB Divide A by B and leave the remainder
A + B Add A to B

A- B Subtract B from A

Arithmetic symbols in STBasic in order of precedence

What's in

a name?

All variables have names, and it's good
practice - although not essential - to
give them names that mean something.
This way when you try to modify a
program months later, you'll have
some chance of understanding it:

Let's take a simple example: John
has five apples and six pears, and he
wants to know how much fruit he has.

In terms of variables the problem looks
like this:

pears = 6
apples = 5
fruit = apples + pears
PRINT fruit

or in a shorter, less clear form:

p = 6

a = 5

f = a + P
PRINT f

From this basic premise, it's easy to
see how variables can be set or altered

to suit the requirements of the pro
gram. The equals symbol is used here
as an assignment operator - that is, a
variable is assigned (given) a value.

Our first

Basic program

I have left this until now because it
introduces a whole new part of ST
Basic - the List and Edit windows.
Everything we have done so far can be
typed directly into the Command
window, and the result of our instruc

tions is echoed in the Output window.
Entering a program is a little more
complex, but mistakes can be rectified
relatively easily once you get the hang
of the editor.

Type EDIT from the Command
window to enter the editor, and Fl 0 at
any time to leave it. While a line is
being edited it will be shown in light
text, but note that the changes don't
take effect unless you press Return. To
get used to the editor it may be
worthwhile to use it to enter the

following examples.
All programs in ST Basic rely on line

numbers as reference points. Every
instruction you give to the computer is
typed on a line, and every line has a
number. It is a long standing convent
ion that line numbers go up in steps of
10 - 10, 20, 30 and so on. This makes it
easier to insert extra lines at a later

stage.

Incidentally, the Basic command
AUTO can be used to enter the line

Our first program

Try this...

Experiment with different
expressions using *, /, +, and -
Try to predict the results?
Variables are normally assigned
a value. What happens if you
attempt to use a variable before
it has been given a value?
Modify the fruit program to
account for the difference in

price between apples and pears.

numbers for you, though I prefer not to
use it.

Enter the following short program
using the editor:

10 INPUT "How many pears ",pears
20 INPUT

",appl
"How many
es

apples

30 fruit = pears + apples
40 PRINT "Total = ';fruit

The first two lines introduce another

simple keyword, INPUT. This causes
the program to stop and wait for you
to type something and press Return.

In this case the program will expect
to find a number. Anything between
the quotes is printedjust like the PRINT
statement. This time though, when you
enter a number and press Return, the
value is assigned to the variable
following the comma.

The message in quotes is in fact
optional, and if you omit it Basic
responds by stopping and printing a
question mark while it waits for some
response.

To see this program work, type RUN

or operate. RUN from the menu of the
same name. Of course, a program like
this can be simplified. For instance line
40 can be rewritten as:

40 PRINT "Total

apples+pears

Which completely obviates the need
for line 30.

Now let's just suppose John buys
the fruit at a fixed cost per unit, no
matter what it is. How does he

calculate how much he has to pay? We
need another variable cost to indicate

the cost of the produce.
This amount will be fixed, so it can

be defined as a constant in the pro
gram. In Basic constants are just vari
ables - it's up to the programmer to
ensure they keep the same value.
Here's our program modified to include
the cost per item:

5 cost=0.10

10 INPUT "How many pears ",pears
20 INPUT "How many apples

",apples
30 PRINT "Total="apples+pears
40 PRINT "PTi ce="CappLes

+pears)*cost

Variable

differences

THERE are quite significant differences
you should be aware of in the way old
and new ST Basic handle variables. For

instance, old ST Basic stores integer

fiq&saMk^
STRUCTURED programming invol
ves breaking a problem down into
small meanageable chunks or mod
ules. These modules can be written

as general procedures and are
nromally complete routines which
are totally independent of the rest
of the program.

Once written they can easily be"
incorporated into any program.
Each module will have a specific
function, and possibly, input and
output parameters. A whole team
of programmers may work on large
projects, and a module may be allo
cated to each one.

variables - those with a per cent sign
tagged on to the end of their name - in
two bytes. This means they can handle
whole numbers between -32,768 and

+ 32,767.
New ST Basic on the other hand uses

four-byte integers with a much larger
range of -2,147,483,648 to
+ 2,147,483,647. Similarly, double
precision floating point numbers -
those with a hash after their name -

can be much larger in new ST Basic.
There are also bugs in old ST Basic.

For instance, try entering:

77777

and you'll be told function not yet
done, and ifyou print out the value of x
you'll find it is 0.00079E+ 1 11 So take
care with floating point maths oper
ations - the results may not be what
you expect.

Pull-down this menu with the mouse and click
on Run to see the program in action

Click here with the mouse to make

the Edit window full size

II INPUT "How nany pears ".pears
26 INPUT "How nany apples ".apples
38 fruit : pears + apples
48 PRINT "Total : "Jfruit

Dk EDIT

E

Type EDIT in the Command window
to enter edit mode, or pull down the
Edit menu and click on Edit

A-
The Edit window is brought to the
top and you can enter your program
here

^

~

Real programming

Real numbers and integer variables

THE single precision real number is
perhaps the simplest of all variables in
ST Basic because it behaves exactly as
you would expect. Real numbers are
any numbers that can contain a
floating point fractional part - a deci
mal fraction.

However, if the thought of decimal
fractions makes you twitch don't
worry - they're just like amounts of
money. For instance, the number 3.14
is an approximation of the math:
ematical constant PI, but it could
equally mean £3.14- the price of four
pints at the local.

Similarly the numbers 1.2345679
and 1.0 are both real numbers. They
have an integer (whole) part and a
fractional part. However, 1 is an
integer and doesn't have a fractional
part.

In fact computers can only deal with

integers - binary zeros and ones - the
conversion to real numbers being per
formed at a very low level by clever
software.

It makes sense then, that this con
version process takes time, and if an
alternative was provided programs
would execute faster.

The advanced features of ST Basic
provide for this in the form of so-called
integer variables - variables that can
only hold whole numbers. At first sight
these may seem a little limiting,
however, most programmers rarely use
anything else, unless floating point
arithmetic is specifically called for.

Even then, many use techniques
known as scaling and rational approxi
mations. The table here shows some
rational approximations for some
typical mathematical functions and
numbers.

PI = 3.14

SQR(2) = 1.414
SQR(3) = 1.732
e = 2.718

C = 2.99792

355/113

19601/13860

18817/10864

28667/10546

24559/8192

8.5 x 10E-8

1.5 x 10E-9

1.1 x 10E-9

5.5 x 10E-9

1.6 x 10E-9

THERE are two ways to describe an
integer variable in ST Basic. The first is
to append the per cent character to the
end of its name, and the second is to
use the DEFINT statement. Per cent
can be used after any variable name to
denote that it is an integer, and it
works in immediate mode or within a
program listing.

DEFINT can only be used inside a
program, but works on a range of vari
ables. For instance the line:

10 DEFINT a-d

tells Basic that any variable name start
ing with a letter between a and d
inclusive is to be treated as an integer.
You should note this statement is not
case sensitive, which means variables
starting with A-D are also treated as
integers.

Incidentally, the exclamation mark
type specifier can be used like the per
cent sign to indicate a real number,
overriding the DEFINT for the named
variable.

Integer arithmetic is the simplest
form of all maths, but you should be
wary when attempting to mix integers
with real numbers. Try the following in
immediate mode - type it into the
command window - being careful to
note the use of per cent:

A%=2

B=2

PRINT AZ+B

Basic prints 4, which is correct. Now

try the following example:

A%=2.5

B=2.5
PRINT A%+8

This prints 5.5, which is quite wrong.
Why?

What happened is that Basic has
performed rounding on the integer
variable A% and made it 3. This oper
ation is performed whenever the vari
able is assigned a new value - so the
error can be cumulative and very con
fusing. Remember, if you must mix
types - do so with extreme caution.

Just to confuse matters further, Basic
provides the INT statement to slice off
the fractional part of a real number. Try
the following to see this in action.

A=2.9

BX=A

PRINT "Value=";A
PRINT "Rounded=";BZ
PRINT "Truncated=";INT(A)

This prints:

Value=2.9

Rounded=3

Trunca ted = 2

A function related to INT is CINT. It
works in the same manner to INT but

this time it rounds the number instead,
so the previous example could be
written:

A=2.9

PRINT "Value=";A
PRINT "Rounded=";CINT(A)
PRINT "Truncated=";INT(A)

Strings

and things

IF by this point you're still eagerly
typing in the examples then you've got
what it takes to be a programmer. If on
the other hand, all of the maths is start

ing to make your brain wave the white
flag, don't worry. Programming
fortunately, is not all about complex
maths.

The third variable type in ST Basic is
called a string, and these have the
dollar character appended to their
names. For instance, AS and names are

string variables. They are used to store
sequences - strings - of characters, let
ters, numbers and so on.

Unlike numeric variables, you can
only add strings together, a process
called concatenation. Attempting
anything else, like division, would be
meaningless to Basic, and causes an
error.

At first sight then, strings may seem
a little limited. Not so. They are one of
the most powerful features of the Basic
language. Try out the following
program:

10 INPUT "Last name:";lasts
20 INPUT "First name:";first$
30 PRINT "Hello ";first$;""; last$

The computer responds:

First name:?Mark

Last name:?Smiddy
Hello Mark Smiddy

Now by juggling the program
around a little it is possible to see string
addition - concatenation - in action:

10 INPUT "Last name:"; lasts
20 INPUT "First name:";firstS
25 hello$ ="Hello "+f i rst$+""+ Las t$
30 PRINT helloS

Notice the way the semicolons in the

WHEN rounding takes place, as
in maths, if the fractional part is
equal to or greater than 0.5 the
number is rounded up, otherwise
it is rounded down.

However, there is another
system called truncation, here the
fractional part is chopped off
regardless of its size. Some state
ments, like INT, perform trunc
ation, while others round, so it is
important to recognise the dif
ference.

Real programming

print statement have been replaced by
additions for the string in line 25. The
output from the program is the same,
although the listing is slightly longer.
But, if you wanted to print the string
helloS at different points in the pro
gram this way is shorter and simpler.
Strings are always added from left to
right.

Getting out

the scissors

STRINGS of characters, be they names,
sentences, words or whatever, when
held in variables can be treated very
much like real pieces of string. You've
already seen how to tie them together
and the table below shows the func

tions for chopping them up, plus a few
others.

The most commonly used functions
are LEFTS, RIGHTS and MIDS. Type in
and run the following to see them in
action:

10 a$="Left' +"Hi dd Le"+"Right"
20 PRINT "L >ft word=", LEFTS

(a! ,4)
30 PRINT "R qht word= ';RIGHT
$($,5)
40 PRINT "It ddl e word =";MIDS
(a 5,5,6)

Which prints:

L •ft word=Le ft

R qht word=F ight
M ddl e word= Middle

E^iCM^j^
KEYWORDS which produce a
result or value are known in Basic

as functions. They are always
preceded by the equals sign, for
instance = LEFTS or =LEN. String
functions have a dollar appended
to their name. All other functions

return some numeric value.

Why this happens may not be
immediately apparent, so let's examine
the listing step by step - something
you'll have to do with your own pro
grams when they do odd things.

At line 10 the string variable aS is set
to LeftMiddleRight using concat
enation. Line 20 sees the first of the

new functions - LEFTS. Its syntax is:

a$=LEFT$(b$,X)

where the aS is the leftmost X charac-

LEFTS Get left part of a string
RIGHTS Get right part of a string
MIDS Get middle of a string
LEN Find length of a string
INSTR Search one string for

another

VAL Return the numeric

value of a string
STRS Convert a numeric

value to a string

57"Basic string operations

Pull this menu down to run the program

Desk FiW Run Edit Debug

LIST

Left uord-Left
Right word=Right
Middle word=Middle

WfllfP
Ok 18 a$="Left"+"Hiddle"+"Right"

28 PRINT "Left word-";LEFT$(a$,4)
Ok 38 PRINT "Right word="lRIGHT$(a$,5)
Ok 48 PRINT "Middle word=";MID5(a$,5,6)
Ok run
Ok I

L

ters of the string bS. The string itself
may be either enclosed by quotes, a
string variable, or a function returning
a string value. Similarly, the numeric
value X may be a number, a numeric
variable, or a function returning a
number. Negative values of X will
cause an error.

Line 30, is exactly the same as LEFTS
except that RIGHTS returns the right
side of the string. Line 40 adds an extra
dimension to string handling. Here a
third parameter has been added and
the syntax of MIDS is:

a$=MID$(aS,start,extent)

Here start is a number pointing to
the position in the string to start
reading from and extent is the number
of characters to actually read. The rules
appertaining to RIGHTS and LEFTS still
apply.

In the example, starting from pos
ition five and going on for six charac
ters yields the word Middle.

Try this

• Write a program to add three
floating point numbers, double the
result then print it as a floating point
number, a rounded integer and a trun
cated integer.
• Write a program to approximate PI
(22/7), then use it to calculate the area
of a circle of (Pl*radius"2).
• Write a program to input a two str
ings, concatenate them and print the
result.

• Modify the last program to print out
the two halves of the resulting string
(use LEN(stringS)).

The program's output

Entering the program into the command window

_.

_

Looping the loop

Repeating

yourself

COMPUTERS are well known for

calculating problems at breakneck
speed. The ST is of course no exception,
but up until now we've only seen how
to make Basic do drainpipe arithmetic.
That is, the program falls straight
through from the top to the bottom -
one line at a time - like a marble in a

drainpipe - until it reaches the end.
This sort of thing is probably simpler to
do on a pocket calculator, so what is
the advantage of Basic?

More often than not, certain oper
ations need to be computed more than
once. Consider the case of a simple
football pools program. Now let's
assume the team names will be entered

one at a time. The program has to do
the same thing - ask for a team name -
many times. Writing each instruction
on a separate line would take forever,
but Basic has a simple answer - loops.

There are two types of loop in Basic
programming simple and controlled. Of
the two, simple loops are most often
used to keep a program running
without end - like an arcade game.
Simple loops are best performed with
the much maligned GOTO statement.
In fact, in ST Basic GOTO is the only
way to perform such a function. Try
this:

10 PRINT "Bjy At ari ST User";
20 PRINT ". it's great!
30 GOTO 10

When you run this program, it won't
stop. This is because Basic is in an

ffatfrt&$k...
ALL FOR ... NEXT loops have
three parts. A head - where the
loop is defined. The body - the
part that's repeated - and the tail
where the loop is tested and
repeated if necessary. Other
looping constructs like WHILE
WEND are tested at the head, the

tail simply closes the loop.

uncontrolled loop - continuously
executing the three lines. When Basic
reaches line 30 the GOTO statement

tells Basic to go straight back to line 10.
Stop the program by selecting Break
from the Run menu. In fact, you can tell
Basic to go to any line number in a
program, however, forward jumps are
not recommended.

Avoiding knots

BY its nature GOTO should only be
used where absolutely necessary
otherwise you're liable to tie yourself
into an inextricable software knot.

Consider the following:

10 GOTO 40

20 GOTO 50

30 PRIN1 "Here!"

40 GOTO 20

50 GOTO 30

What happens when you run this?
As you can see GOTO has now tied

this program around itself. While this
may seem silly imagine a 20k long pro
gram with similar jumps. Frightening
isn't it? The program may work - but
what if? Finally, never jump out of a
controlled loop. You may be tempted,
but you'll just create needless con
fusion.

Taking control

THE most commonly used controlled
loop in Basic is the FOR ... NEXT con
struct - it's also the simplest form of
closed loop. Now for an example, type
in and run the following:

10 FOR n= 1 TO 10

20 PRINT "Numb >r=";n
30 NEXT

40 PRINT Tina =";n

As you will see, Basic counts from 1
to 10 and prints the final result. This
simple program is split into three dis
tinct parts. We'll now examine each
one in turn. (The panel shows a more
detailed explanation of FOR ... NEXT).
• Line 10 is the start of the loop, and
here we tell Basic to start counting at
one and stop at 10. The loop variable
or counter is n. The optional STEP
statement has been omitted, since in

this case the default increment of one
was required.
9 Line 20 forms the body of the loop.
This prints the current contents of the
loop variable, n.
9 Line 30 forms the tail. This is where
the loop variable is incremented by one
and tested against the limit. If this is
exceeded the loop terminates.
9 Line 40 prints the final value. Note
this is one higher than the number of

An example of
a nested loop

Second loop is
executed

100 times

First loop controlled by counter i
is executed 10 times

The Edit window is brought
to the top and you can
enter your program here

8

Looping the loop

IN any program, a loop is any
block of instructions which is

executed more than once. There

are two types of these - the open
loop and the closed loop. Open
ones execute a variable number

of times and closed loops execute
a fixed number of times.

loop counts (iterations). But what if
you want to count backwards?
Replace line 10 with this:

10 FOR n=10 TO 1

Now run the program. It doesn't work,
but why?

Stepping out

IN the previous example we assumed
the step size was one so the program
worked, however this time Basic is
trying to count backwards from 10 to I
with a step size of + 1. In other words
the step size was wrong so it skips the
loop body. To correct this problem it is
necessary to use a negative step size,
which is achieved like this:

FOR n = TO 1 STEP-1

Similarly to count from positive num
bers to negative numbers using a
larger increment use the following:

10 FOR n=10 TO -10 STEP -2

Notice here there are only 10 loops.
One of the best features of con

trolled loops is they can be nested.
Nesting is a process where one con-

FOR... NEXT loops

THE syntax of the FOR
loop is as follows:

NEXT

FOR count=start TO limit

STEP stepsize
(statements)
NEXT count

Here the head of the loop con
tains the keyword FOR, and this
marks the start of the loop. The
next stage contains the variable
assignment:

count=start

This variable count - known as

the loop variable - must be
supplied and can be any valid
numeric variable. However, in

many cases an integer variable
would be used. The numeric value

limit can itself either be a number or

Desk File Search Options Progran

HiSoft BASIC CoHpiler 8 HiSoft 1987 Options
i

Overflow checks

Array checks

Line nunbers

Pause checks

Break checks

Variable checks

Underlines

I Ho] Synbolic debug

I No I Error Messages m

rHb~l Debug with HOHBAS \W}\

E^ Conpile to
Disc I BTOB1 Hax size: 2flj_k

ran

fun I Hax Speed I I Hax Safety

Cancel Conpile
\

Mil
HiSoft Basic compiler will load and compile STBasic listings, enablingyou to
create stand-alone programs that execute directly from the Gem desktop.

trolled loop becomes the body of a
second or even third. There is a limit to

how deep such loops can be nested
but I've never heard of anyone
reaching it by design. Here's an
example of a nested FOR ... NEXT loop:

10 FOR i= TO 10

20 FOR j= TO 10

30 PRINT *j
40 NEXT

50 NEXT

The body of the first loop controlled
by the counter I is executed 10 times,
similarly the body of the second inner
loop is executed 100 times. I'll leave
you to determine why this is for
yourself.

a variable. This will be the number

the loop will start counting from.
Next comes the keyword TO.

This is an essential part of the
syntax, although it does little other
than aid readability.

Finally, the last essential part of
the FOR syntax is limit. Once again
this can be any valid numeric vari
able or just a number. This is the
limit of the loop.

An optional part of the FOR ...
NEXT construct is STEP. This

determines the size of increment -

that is the amount added to the

loop variable when the NEXT
statement is reached.

The variable stepsize can be
either a variable or a number. Basic

assumes a step size of one so this
statement is normally omitted for
simple loops.

The number of times the loop is

Try this.

9 Write a program to print out the
nine times table, with the results

formatted:

1*9 = 9

2 * 9 = 18

9 Use a GOTO to determine the
maximum level of nesting of FOR ...
NEXT loops. This will create an error to
watch out for in your own programs.
9 The NEXT statement can be

optionally followed by the name of its
control variable. What happens if the
NEXTs of two nested loops are mixed
up?

executed therefore is given by:

(limit-s ta rt)/steps i ze

The loop body follows the FOR
header. This is the set of Basic com

mands, functions or statements - a

mini program if you like - that will
be repeatedly executed. The loop
body is also optional, leading to the
fact that FOR ... NEXT is often used

for time delays.
Finally, comes the NEXT state

ment. This can optionally be
followed by the loop variable for
clarity, although normally this is left
off. When NEXT is reached, Basic

adds stepsize to count and checks
to see if limit has been exceeded. If
it has, the loop terminates
immediately, if not, control returns
to the first statement after the

head.

O

°

~

.

Conditional programming

Decisions and

more decisions

AS human beings, we make decisions
all the time - some trivial, some impor
tant. For instance, is lager cheaper at
the Black Horse or the White Rabbit?

According to a set of rules, or
determining factors, we make a
rational choice. The Black Horse is

cheaper but the White Rabbit is closer
- we'll go to the Black Horse.

Computers of course, can't think in
such terms, so we are reduced yet
again to a case of pure logic, courtesy
of binary electronics. Basic of course
makes things a little simpler, and
instead of thinking in ones and zeros,
Basic thinks in terms of true and false.

From a simple numerical assumption, it
can draw a conclusion whether it is

true or not - and act upon that
decision.

This ability to decide on one course
of action or another, forms the
backbone of all programming in every
programming language. To see how
Basic reacts to pure logic type in and
run the following listing:

10 A=1:B= 2
20 PRINT "A equa ts B:" A=B

30 PRINT "A not :qual to B:", AoB

40 PRINT "A is b ggest :";A>B
50 PRINT "B is b ggest :";A<B

WHEN ST Basic meets an IF state

ment it will expect to find one or
more conditions and a THEN state

ment telling it what to do next. If
the test fails the optional ELSE part
will be executed. Afterwards pro
gram control falls to the next line in
seguence unless redirected by a
GOTO.

Basic responds with:

A equa Is B:0
A not ?qual to B:-1

A is b ggest •0
B i s b ggest •-1

This example raises some important
points, not least what the symbols
mean. They're known as the relational
operators, and a full list appears in the
table below.

The designers of Basic borrowed

<>

>

<

> =

< =

. Equal to

. Not equal to
.. Greater than

.. Less than

Greater than or equal to
Less than or equal to

ST Basic's relational operators

Desk File Run Edit Debug

LIST

18 A:l:B:2
26 PRINT "ft equals B:"Jft:B
36 PRINT "ft not equal to B:";ftOB

is biggest:";fl
is biggest:";

46 PRINT
56 PRINT

what symbols they could from algebra,
so some may be familiar. Certain sym
bols however, like algebra's crossed
equals, are not available on most
micros (or mainframes come to that) so
the designers invented their own.

Two of the above statements are

true and two are false - indicated by a
result of true (-1) or false (0). By
studying the program it should be clear
which are true and which aren't. The

two values are not the same and B is

the largest.

Basic's lie

detector

WHAT happened was that Basic was
drawing conclusions from a premise.
Given A= I and B=2 and then told to

print A=B, it concluded that A=B was
false and printed zero to indicate this.
Similarly,when asked to print A<B, as
A is less than B, Basic concluded this
statement was true and printed -1.
Read the listing again and it will soon
become clear what is happening.

This is how Basic always arrives at its
conclusions. No matter how complex a
logical expression may appear, Basic
breaks it down (parses it) into manage
able chunks and checks the validity of
each one in turn. The value -1 is used

internally by ST Basic to represent a
true conclusion and 0 to represent

OUTPUT

Mathematical notation for less than Mathematical notation for greater than

10

Conditional programming

false. However any none-zero value is
treated as true and zero is always false.
I'll explain how this can be of use later
on.

Testinq, testini

AT last we arrive at the crossroads in

Basic programming - the decision
makers themselves. It is essential that

in a program you are able to test a
variable or expression and see whether
it is true or false.

For instance, suppose you are
writing a game. One of the most mun
dane tasks is writing the so-called user
interface. This is the part which allows
you to move say, your spaceship and
fire missiles to blow up the enemy.

Without some sort of testing facility,
it wouldn't be possible to discover
which way the joystick was facing or
whether the fire button was pressed.
Or, on a more down to earth level,

how do you check the values from an
INPUT to make sure they stay within
predefined limits the program can
handle?

Basic provides the tool for all this
and more in the misleadingly simple
form of the IF THEN ELSE statements.

The syntax of these is either:

IF <condition> THEN <statement>

Or with the optional ELSE:

IF <condition> THEN <stateient1>
ELSE <statement2>

Before delving into the workings of
these take a look at the following
simple example:

10 FOR N=1 TO IB
20 PRINT N

30 IF N=5 THEN PRINTIatt way
through"
40 NEXT

WHEN Basic performs a logical test it
leaves a result of true or false as a

conclusion. This is where the truth

tables come in. Using the truth tables
as a guide, we can combine the
results of two or more true/false tests

to come out with an overall answer

of true or false. To make this clearer
let's examine the revised line 20 on

the right with n set to 3:
9 IF Start of the IF .. THEN test.

9 n<0 n is less than 01 False.

9 OR The logical operator.
9 n> 10 ... n is greater than 10? False.
9 THEN ... Considering the truth
table for OR we find False OR False is

False so the test fails so the rest of the
line is ignored.

Now let's consider what happens

This program is quite straightforward
in operation but it shows IF ... THEN in
operation at its simplest level as a
straightforward test. The message
"Half way through" is only printed
when the value of A/ is exactly five.
Now alter line 10 to read:

10 FOR N=1 TO 10 STEP 3

When the program is run with this
alteration the message is not printed.
This is because the value of N never

actually eguals five.
By now you should be able to see

how IF works in its simplest form.
When the line is executed, Basic does a

test on the condition to see if it returns

true or false (0 or -1). If the condition is
satisfied - true - everything following
THEN is executed. If not, execution

continues on the next highest line
number in seguence.

A more useful use of IF is in range
checking inputs. Remember the prob
lem above?

Try the following:

10 INPUT "Enter any number up
to 10"; n

20 IF n>10 THEN PRINT "Too b

ig, try again":G0T0 10
30 PRINT "You entered";n

When this program is run, and a
number greater than 10 is input a
message is printed and you are asked
to try again. Note how the GOTO
statement follows immediately after
the PRINT and is separated by a colon.
This is because we only want to return
to the input - at line 10 - if an error
occurred.

Any statements placed after the
GOTO would never be executed and

would therefore be meaningless. There
is of course one exception to this rule -
the ELSE statement, more of this later.

The previous example works per
fectly well until your program requires

A OR B = Result

False OR False = False

True OR False = True

False OR True = True

True OR True = True

The OR truth table

if you enter a value of 12 for n:
9 IF Start of the IF THEN test.
9 n<0 n is less than 0? False.

9 OR The logical operator.
9 n> 10 ... n is greater than 10? True.
9 THEN ... This time False OR True is

True. The test succeeds and the state

ments following THEN are executed
causing the error to be printed and
sending control back to the input at
line 10.

a range of numbers, say between 0
and 10. Remember that numeric vari

ables can hold negative numbers as
well as positive ones. If you enter a
negative number where a positive
value is required the program will in all
probability produce an erroneous
result.

In this case you could use the ABS
function, which makes all numeric

values positive, but this may also cause
an error. Alternatively you could use a
second IF ... THEN to trap any value
less than zero by adding the following
line:

25 IF n<0 THEN PRINT'Too sma

11, try again":G0T0 10

Now this is all well and good, but it
isn't very neat. Besides which it may
not be necessary to give a message
explaining the fault in great detail. A
message such as "Out Of Range" will
probably suffice, if indeed you want to
give any message at all.

The simple answer then, is to
combine the results of the two con

ditions into one logical statement.
Once again, before exploring how
these work remove line 25 and amend

line 20 to:

20 IF n<=-1 OR n>=11 THEN PR
INT'Out of range, try again"
:G0T0 10

By way of a little variety, I've used
some alternative relational operators to
perform the actual range testing.
Referring back to the operator table
should clarify these and serves to
demonstrate how they can often be
interchanged to suit your own per
sonal preference. Or, when you
become more experienced, actually
make a program more readable to
others.

Try reading the last example out
loud, replacing the symbols with their
meaning. This should demonstrate the
thinking behind the test and what
happens. As a good rule of thumb: If
you can't read it out loud it's too
complex. In this case the line is simplest
thus:

20 IF n<0 OR n>10 THEN PRINT
"Out of range, try again"
:G0T0 10

By now, you may well be wondering
what the OR does, though I bet many
of you have guessed. Consider the
table alongside. This is what is called a
truth table for the conditional OR

operator.
If you've never seen one before, it

can look a little daunting although it is
quite easy to understand once you get
the hang of it.

Once again, it has its roots very
firmly planted in binary electronics and
a mathematical technique known as
boolean algebra.

Fortunately, you don't need to
know anything about these subjects to
understand their usage in Basic. Logical
operators always take two values
organised like a normal arithmetic
statement.

_

_

The truth of the matter

Logical

operators

SO far we have looked at the OR log
ical operator, but as you can see from
the tables alongside, this is not the only
one. In fact all the operators listed here
can be used in much the same sort of

way as we'll see, but OR and AND are
probably the most common and useful.

Comparing the truth tables for AND
and OR indicates they have very little
in common, although in fact OR
includes the true result of the AND

function. True OR true gives a result of
true, also true AND true is true.

Let us assume for a moment, that

two values - which we'll call high and
low - need to be checked, and both

must be out of range before reporting
an error. Writing this in terms of OR
won't work. Look at the following:

IF lou<0 OR high>10 THEN PRINT
"Out of range, please try again"

If this line was part of a program and
the two values were in range it would
work - that is, the message would not
be printed. If however, just one value
strayed outside the specified limits, an
error would be reported, and this isn't
what is wanted. More confusingly,
because the OR operator includes
AND, the error would be flagged if
both values were also incorrect.

The line would be better written in

terms of AND:

IF low<0 AND high>10 THEN PRINT
"Out of range, please try again"

Now only if both conditions are satis
fied will the message be printed. The
difference is subtle admittedly, but
there all the same.

There are times, of course, when an

OR is reguired, but the AND function
which it includes would cause prob
lems. In other words, we want to do

something when only one of two con
ditions is true. The OR operator would

Desk File Run Edit Debug

LIST

AND. .Logical AND
OR. .Logical OR

XOR . .Logical Exclusive OR
NOT. .Logical NOT
IMP. .Logical implication

EQV. .Logical equivalence

ST Basic's logical operators

False AND False= False

True AND False= False

False AND True= False

True AND True= True

The AND truth table

NOT true= False

NOT False= True

The NOT truth table

Truth tables for the logical operators

seem the logical choice, but it will not
always work.

Suppose we want the error reported
if one or the other condition is true, but

not both. In this case OR simply won't
do, so instead the XOR operator is
used XOR (eXclusive-OR) gets its
name because it excludes the AND

function from OR:

IF lo«<0 XOR high>10 THEN PRINT
"Out of range, please try again'

Surprisingly, XOR is very rarely needed
in practise, as OR will usually suffice.

There will be times when more than

one logical statement will be reguired.
As logical operators have a priority in
the order NOT, AND, OR, XOR, IMP,
EQV, this can sometimes cause

ambiguous results. Although it won't
usually cause problems, try and work
out the truth or falsehood of the

following:

10 a=1:b=2:c=0

20 PRINT a=1 OR b=2 AND c=3

Depending on which way this is
approached will determine whether or
not -1 (true) or 0 (false) is printed. A

OUTPUT

FDR count=l TD 16
28 IF counts THEH PRINT "Less than six" ELSE PR1HT "More than five"
38 NEXT3

nni

Figure I: The IF...THEN...ELSEstatement

False XOR False= False

True XOR False= True

False XOR True= True

True XOR True= False

The Exclusive OR truth table

False IMP False = True

True IMP False= False

False IMP True= True

True IMP True= True

The implication truth table

False EQV False= True

True EQV False= False

False EQV True= False

True EQV True= True

The equivalence truth table

better way of making sure your
meaning is clear is to enclose some of
the operations in parentheses. In other
words, break up the line into easily
understandable chunks and make the

meaning clear. This will also result in
making the program easier to read
later on. For instance:

10a=1:b=2:c=3:d=0

20 PRINT (a=1 OR b=2) AND c =3

has a different result to:

10a=1:b=2:c=0
20 PRINT a=1 OR (b=2 AND :=3)

When the

test fails

THERE are, of course, instances when a

certain set of conditions calls for one

action or another. The most obvious

method would be to use a second or

even third conditional test. However,

ST Basic provides a rather more elegant
solution in the IF ... THEN ... ELSE

statement.

The commands following the ELSE
are executed whenever the conditional

part of the IF fails. Since ELSE is
optional to the IF THEN syntax, if it
can't be found, program control
resumes at the next line number in

sequence. To see this in action enter
and run the following:

10 FOR count=1 TO 10

20 IF count<=5 THEN PRINT les

s han six" ELSE PR.'.NT "More t

han five"

30 NEXT

As soon as count reaches six the test

fails and the ELSE part of line 20 is
executed. It's as simple as that. In fact,
the ELSE can be followed by a further
IF THEN if necessary. However, use of
a second ELSE may make the line
ambiguous to you and other versions
of Basic. Avoid it.

One last point worth mentioning is

12

The truth of the matter

WHEN using relational operators
to make tests it is important to
note that we make a statement to

Basic, and it decides the validity
of that statement. This may sound
a roundabout way of doing
things, but if you think in this
way, it's often easier to construct
and debug lengthy conditional
statements.

the fact that Basic uses zero and non

zero values to indicate true or false.

This can be used to produce some
simple statements. It is most often used
for a system known as flagging -
setting a numeric variable to indicate
truth or falsehood.

A flag can be any spare numeric vari
able, although it helps to give it a
meaningful name. If you were writing
an arcade game for instance, the end of
the game could be influenced by many
different factors - normally the player
losing all his lives. In the main loop, a
flag can be tested to indicate this -
even though the flag could be set at
several different points in the program.
Here's how to do it:

IF dead THEN PRINT "Game over"

: END

Initially, when the program is run
dead is set to zero, so the test always

fails. When the player loses all his lives
though, for whatever reason, dead can
be set to any non-zero value.

Implying

something else

AFTER this heady discussion, there still
remain two logical operators to be
explored - EQV and IMP. By their
nature they're not often used in pro
gramming, but find a use in specialised
applications. Both allow a program to
draw conclusions about something
given a relationship between two
items.

The EQV (equivalence) operator
checks two logical statements or con
ditions and leaves a logical true if they
are the same. This relationship can be
seen in the truth table. For instance try

THE use of ELSE after an IF ...

THEN to call an unconditional

branch via GOTO should be

avoided - especially if the THEN
statement already involves a
branch. Not only is this bad pro
gramming practice, it can also
lead to great confusion.

Desk File Run Edit Debug

LIST

0

HO PRINT 2+2=4 IMP 3+3=6
26 PRINT 2+2=4 IMP 3+3=7
38 PRINT 2+2=5 IMP 3+3=6
46 PRINT 2+2=5 IMP 3+3=7

Figure II: Implication operator IMP in action

iE&Ttl

PROBABLY the simplest and least

used of all logical operators is
NOT. This simply reverses the
truth of a logical statement, and
proves that black can be white. It
can often be used to simplify an IF
...THEN...ELSE statement by
reversing the order of execution
and removing the need for ELSE.

the following:

10 PRINT 2+2=4 EQV 3+3=6

20 PRINT 3+2=2 EQV 5+5=1

Similarly, the implication operator
IMP checks two logical statements to
see if the conclusion (left of the IMP) is
justified by the premise (right of the
IMP). If so IMP leaves a logical true as
the result. Now try this, remembering
the first statement is the logical
premise:

10 PRINT 2+2=4 IMP 3+3=6

20 PRINT 2+2=4 IMP 3+3=7

30 PRINT 2+2=5 IMP 3+3=6

40 PRINT 2+2=5 IMP 3+3=7

As an exercise I'll leave you to dis
cover why these programs arrive at
their conclusions. But don't be put off
by the apparent complexity of all of
this. Most programmers only ever use
AND, OR and NOT; the others are

merely there for completeness.

OUTPUT

11

m

~

While on the other hand

Simulating

REPEAT?

THE FOR ... NEXT loop construct is the
simplest form of controlled loop, but
there are several other types too. Some
Basics, like STOS, include the REPEAT...
UNTILconstruct, which repeats several
program lines until a certain condition
is found to be true.

Others - and this includes ST Basic -

use the similar but not quite identical
WHILE ... WEND construct to repeat
part of a program while a certain con
dition is true. However, REPEAT ...
UNTIL can be simulated in ST Basic

quite easily should you require it by
using IF x THEN GOTO repeat.

Like FOR ... NEXT, a WHILE ...
WEND loop has three distinct and
separate parts - a head, body and tail.
The WHILE statement forms the head

of the loop, the optional body forms a
series of commands or lines to be

repeated, and the WEND forms the
tail.

This is where the similarity ends.
Although this is a controlled loop
structure, the loop does not terminate
until a certain condition - defined in

the WHILE part - fails to be met. The
syntax of WHILE ... WEND is as follows:

WHILE <condition is true>
execute program lines

WEND

As you can see, this new loop struc
ture appears to be very simple,
although it does introduce a feature
borrowed from IF... THEN - the condi

tional test. Unlike FOR ... NEXT - a

loop which executes a definite number
of times according to instructions given
in the head - WHILE executes either

indefinitely until a certain condition
ceases to be true, or never at all.

If the condition fails to be met when

the head is executed for the first time,

program control jumps directly to just
after the WEND marking the end of
the loop structure. It is therefore,
important to realise that WHILE ...
WEND can completely ignore the
statements in the loop body if certain
conditions occur.

WHILE

or REPEAT?

LOOK at this example to see how
WHILEloops differ from REPEAT loops.
(Remember, ST Basic does not include
REPEATand it is being featured here to
illustrate the very similar WHILE loop).

Here is WHILE:

10 count=0

20 WHILE count<>10

30 count=count+1

40 WEND

50 PRINT count

And the REPEAT construct - if ST Basic

had one - would look like:

10 count=0

20 REPEAT

30 count=cour t+1

40 UNTIL count= 10

50 PRINT count

These two examples perform exactly
the same task. Even so, in this case it
would be easier to use a FOR ... NEXT

construct as all the program does is
perform a simple count incrementing
from 0 to 10.

However, you should notice an
important variation: In the case of the
WHILE construct, the condition is
tested at the head of the loop, but the
REPEAT tests it at the end, after it has

executed the loop. If the test fails on
the first run of the WHILE loop, the
counter would never be incremented,

yet the REPEAT loop would.
The following example illustrates this

more clearly:

10 count=10
20 WHILE count<>10
30 count=count+1

40 PRINT "Counting.
50 WEND

60 PRINT count

STBASIChas only two loop structures, the fixed FOR... NEXT and the more
flexible WHILE ... WEND statements. HiSoft and Power Basics - both by
HiSoft-are completely compatible with STBasic,soyou can type in and run all
the listings here. However there are several advantages in using these alterna
tive Basics over ST Basic. , •

The first advantage is that the programs are compiled directly to machine
code and therefore run hundreds of times faster. Secondly, a number of ST
Basic bugs are fixed, and finally there are many additions and extensions to the
range of commands available. For instance, as well as the two ST Basic loop
structures two others are available in HiSoft Basic. The first is the REPEAT...

END REPEATloop:

i = 0

REPEAT one

i = i + 1

IF i = 10 THEN EXIT one

PRINT i
END REPEAT one

TheREPEA Tstatement is followed by a variable, in this case one. The end of
the loop is marked by END REPEA T. Unlessyou break out of the loop with an
EXIT command - here shown with an IF... THENstatement - then the loop
will repeat forever.

The second loop structure is the very flexible DO ... LOOP which can be
used in a variety of ways. Youcan DO... LOOP UNTIL, DO UNTIL ... LOOP
or simply DO ... LOOP. The following three snippets of HiSoft Basic code
show how they are implemented:

i=0

DO

i = i + 1

PRINT i

LOOP UNTIL i=10

DO UNTIL i=10

i=i+1

PRINT i

LOOP

i=0

DO

i=i+1

IF i=10 THEN EXIT LOOP

PRINT i

LOOP

The UNTIL statement tests to see ifa certain condition is true - in this case if

the variable i is equal to 10 - and exits the loop when it is. The last DO ...
LOOPhasn t got an UNTIL so it will loop forever unless an EXIT LOOPis met.

It's worth noting that ifyou do decide to use this enhanced version of Basic
you can't subsequently run the programs in ST Basic, as the extra commands
won't be recognised. However HiSoft and Power Basics do recognise all ST
Basic (old version) commands.

13

14

While on the other hand

Here the WHILEskips the body of the
loop and jumps straight to the end
where it prints the value of count.
Notice that the message in the body of
the loop is never printed.

Data

handling

THERE are times while writing a pro
gram that you need to store a series of
constant data items. Take, for example,
a program which prints the name of
any month given just the month
number (1 to 12) to go on. How do
you get the names to print?

One way would be to implement a
series of IF... THEN tests on the month

number and then print the correct
month's name. Or you could store the
names in string variables. You are then
faced with picking which string to print
like this:

10 Month1$="January"
20 Month2$="February"
30 Month3$="Harch"

200 IF n=1 THEN PRINT Month1$
210 IF n=2 THEN PRINT Month2$
220 IF n=3 THEN PRINT Month3$

This may seem like the obvious way
of solving the problem, but of course,
there are alternative methods. Basic

has a far neater way around this prob
lem, which crops up an awful lot in the
real world.

ftaM^^
THE only major difference between
the WHILE loop and the REPEAT
loop is that the latter always
executes at least once. Otherwise

the choice between the two func

tions is arbitrary. ST Basic does not
support REPEAT, but more
advanced Basics like STOS do.

Either function can be simulated

with IF x THEN GOTO label, but

this should be avoided, as GOTOs

tend to lead to programs that are
complex and difficult to debug.

Here is another example: The parts
department in a garage stores spare
parts for a particular type of car. The
number of parts is constant, and so is
each part number. The store manager
wants to computerise the system so
that he can enter a part number and
the micro will print out the part name
(or vice versa).

The problem is essentially the same
as before - inputting a number and

then printing a string as a result. This
time however, there are a much
greater number of items so an enorm
ous number of IF ... THEN statements

would be required.
Basic has two features to solve this

problem, and breaking the task down
further you may realise there are two
things featured here. First there is a
long list of constant values, and second
there is a need to store all of these

values inside the program.
Solving this problem using variable

assignment and IF ... THENs as in the
calendar example would take up mas
sive amounts of memory for a stock list
and would, therefore, be completely
unsatisfactory. There is a much better
way, and that is by tying all of the
similar variables together in the form of
a list, or in Basic terminology, an array.

A new

dimension

ARRAYS are just special forms of the
variables we have already discussed. In
fact, any variable can be defined as an
array using the Basic statement DIM -
short for dimension.

What this means is that one variable

name can have many different values.
Each value is called an element and is

accessed by an index number which is
given in brackets when the variable is
accessed, that is, assigned or read.

When the program is run, Basic re
serves memory for the elements
belonging to the array defined in the
DIM statement. This is only performed
once in the program and attempting to
do it again gives rise to an error.

To see DIM in action try:

10 DIM numbers(10),string$(10)
20 FOR i=1 to 10
30 PRINT numbersCi),

string$(i)
40 NEXT

This short program simply allocates
space for two arrays. The first is a single
precision real and the second a string
type. The thing to note here is that
DIM initialises all of the elements in a

numeric array to zero and all elements
in a string array to null or empty
strings.

If you want the array elements to
hold particular values you must set
them in your program like this:

10 DIM nun ber (10)

20 FOR 1=1 to 10

30 numberst)=i*i

40 NEXT

50 PRINT "All set!"

60 FOR j=1 to 10

70 PRIN1 numberstj)
80 NEXT

Once again, what we have done is

set up a 10 element array, only this
time it has been initialised to hold a set

of calculated values - the square of the
loop counter. This set of numbers is
then displayed on screen using a
simple loop.

Our store manager could define a
string array for the parts names and a
numeric array for the parts numbers.
After entering a number, say n, the
program could print out the part name
with a simple PRINT partS(n).

ALL types of loop structure can be
simulated with IF . . . THEN . . .

GOTO, and in fact early imple
mentations of Basic didn't have any
looping structures apart from FOR
... NEXT. This led to so-called

spaghetti programming with
GOTOs sending program flow
careering all over the listing.

The loop structures are designed
to prevent this and to make pro
grams more readable and easier to
follow. So make sure you use them
where possible.

Arrays like this are called single
dimensional arrays, but it is possible u.
have two or even more dimensions.

Their number and size is decided by the
program, but it is rare to have more
than two or three. A nine by nine (two
dimensional) array contains 81 (9x9)
elements, and a two by three by four
(three dimensional) array has 24 (2 x 3
x 4) elements.

The most powerful feature of arrays
is their ability to hold lists of related
data in an easy to get at form. Not only
this, they are faster to use than
repeating the same calculation, per
haps many times.

This is a technique called tabling and
is used widely by computer pro
grammers in all sorts of languages, not
just Basic.

Consider the SIN function, which

calculates the sine of an angle given its
size in radians.

Suppose for example you need to
use the sine values, given the number
of degrees for a particular calculation. If
you require more than just a few calcu
lations, which is quite likely, the fastest
method is to set up a table of the sine
values from 1 to 90 degrees. Here's
how you would do this:

10 DIM nums(90)

20 pi =3.141593
30 rad=pi/180
40 FOR i=1 TO 90
50 nums(i)=SIN((i*rad))

60 PRINT "SIN ";i;" = "
;nums(i)

70 NEXT

A simple solution to a complex
problem.

_

_.

Read all about it

Conversion

factors

THERE are times when a program
needs to access a lot of pre-defined
information. Consider a utility which
converts values expressed in one no
tation to values expressed in another,
for instance, converting metric weights
and measures into imperial ones. The
conversion in itself is quite straight
forward - you simply multiply the
figure you wish to alter by a conver
sion factor.

For instance, one inch is approxi
mately 2.5 centimetres, so the conver
sion factor you would use to change
inches to centimetres would be 2.5. A

program to convert inches to centi
metres would look something like this:

10 INPUT "Inches";i
20 PRINT i;"incties = ";i*2.5";cm"
30 END

However, the conversion factor for

each pair of units like metres-miles,
pounds-kilograms and so on is different
and there are an awful lot of them, so
this program is not a very satisfactory
solution. A much better way would be
to store all the conversion factors in an

array.

But the problem remains: How do
you get all the numbers into the array
in the first place? The obvious solution
is to simply set up the array as a series
of assignments.

10 DIM fac(5)

20 fac(1)=2.5
30 fac(2)=0.3
40 fac(3)=1.2

fac(4)=0.250

This works OK, but it causes two

problems: First, the program is not very
clear, which could give rise to errors,
and second it is very long winded to
write and debug.

Reading data

WHAT is required then, is some simple
way of tying all the data together in a
simple and organised fashion - a way
you, and anyone else, can understand.
Basic fortunately, provides a rather

ftoMgm^
THERE are several schools of

thought regarding where data
should be placed in a program.
Some say at the start, others at the
end, others say as close as possible
to the lines where it is used. I prefer
to organise data at the end of the
program - out of harm's way -
where it can be added to or amen

ded easily.

firtuvm^
WHILE READ and DATA must exist

in the same program, there is noth
ing to tie them together. They are
not a looping structure like FOR ...
NEXT or a conditional structure like

IF ... THEN ... ELSE. In other words,

the DATA keyword can exist any
where in the program as long as it
is the first statement on a line.

elegant solution to this problem, in the
form of the related READ, DATA and

RESTORE statements.

The syntax of READ and DATA look
like this:

READ variable [,variable,...]
DATA iteml, item2 ...

The READstatement is followed by a
list of variables and DATA is followed

by a list of data items. At first sight this
may look very strange, so let's apply it
to a program:

10 READ count
20 FOR n=1 to count

30 READ name$(n),title$(n)
40 NEXT

1200 DATA 2

1210 DATA "Mark","Mr"
1220 DATA "Jane","Miss"

At line 10 READ attempts to assign

the first item of data to count. The first

data item is the number two, so this is
the same as saying:

count=2

The variable count is then used to

determine the number of loops to be
performed by the FOR ... NEXT struc
ture. READ assigns the following items
of data to the arrays names and titles.
The loop continues until exhausted. At
first sight this may still seem a little
strange. For instance, how does Basic
know where the data is? Or, how does

it know what values to put in which
variables?

The solution to the first problem is
very simple. When Basic comes across a
READ statement it searches the pro
gram from the start until it comes to a
DATA statement. This position is then
stored internally in a variable called the
data pointer. Every time an element of
data is read the pointer is incremented
by one. So the data pointer always
points to the next item of data to be
read - not necessarily on the next line.

The second problem is left entirely to
the programmer. When Basic tries to
assign data to a variable it assumes the
variable and data are compatible, and if
not this gives rise to a very confusing
error.

Consider the following:

10 READ name$,age
20 DATA "Freddy",29

This is directly equivalent to:

10 name$="Fr eddy"
20 age=29

10 REM Metric converter 280 «=INSTR(0,con$(choic
20 ready=1:count=0:con$="" »)/•)
30 WHILE temp$o"END" 290 from$=LEFT$(con$(choi

40 READ temp$,temp ce),tM)
50 count=count +1 300 n=INSTR(n+1,con$(ch
60 WEND oi ce) ,">")
70 RESTORE 310 result$=RIGHT$(con$(c

80 DIM con$(count),facte hoice),LEN(con$(choice))-t
ount) M)

90 FULLW 2 320 PRINT:PRINT "Convert:

100 FOR n=1 TO count ";con$Cchoice):PRINT
110 READ con$(n),fac(n) 330 PRINT "Enter number o

120 NEXT f ";from$;
130 WHILE ready 340 INPUT from

140 GOSUB 170 350 PRINT from;from$;"=";
150 WEND from * fac(choice);result$
160 REM Print list 360 PRINT:INPUT "Press Re

170 CLEARW 2 turn to continue.. .";a$
180 GOTOXY 0,0 370 RETURN

190 RESTORE 380 END

200 FOR n=1 to count 390 DATA "Cms —> Inches"

210 PRINT T;n;") ";con$,0.394
(n) 400 DATA "Metres --> Feet

220 NEXT ",3.281
230 PRINT:INPUT "Selectio 410 DATA "Kilometres -->

n"; choice Miles",0.621
240 IF choice=count THEN 420 DATA "Inches --> Cms"

PRINT "Bye":END ,2.54
250 IF choice THEN GOSUB 430 DATA "Feet --> Metres

280 ",0.305
260 RETURN 440 DATA "Miles --> Kilom
270 REM Subroutine to cal etres",1.61

culate conversion 450 DATA "END",0

15

16

Read all about it

which is correct. Now consider this:

10 READ name$,age
20 DATA 29,"Freddy"

This does not work. See if you can
work out why for yourself.

Structuring data

THIS brings us to the third point -
organisation. A lot can be said about
being neat and structured in program
ming, but there are few cases when
this rule applies so strongly as it does in
data. The rules are:

• Keep it simple
9 Group related elements together
whenever possible

If you follow these guidelines you
will find programs are more likely to
work first time and are easier to debug
if they do go wrong.

Data organisation can be seen in the
example listing. This is a program to
convert metric measurements to

imperial and back again. Don't enter it
just yet, but consider the way the data
has been arranged:

m DATA "Metres --> Feet",3.281
418 DATA "Kilometres --> Miles",0.621
420 DATA "Inches --> Cns',2.54

Each DATA line consists of two

items. First there is a text string which
is used to form part of an options
menu. Alongside it is the conversion
factor itself. In this way you can see
which conversion applies to which
factor. Likewise you can add more con
versions very simply. Now let's assume
the data had been set out like this:

400 DATA "Metres --> Feet"

410 DATA "Kilometres --> Mi Us"

420 DATA "Inches --> Cms"

430 DATA 3.281,0.621,2.54

In this case the program would have
to be amended to account for the dif

ferent layout. All the same, the data
does not mean an awful lot - it is just
strings of text and meaningless
numbers.

Before leaving the subject of data
there is one other command, without

which most programs would be very
hard, if not impossible, to write. As has
already been said, the data pointer is
incremented by one every time an item
of data is read. When Basic runs out of

data - the pointer runs past the end of
the program - it prints the message
Out Of Data.

If you want to read the same data
more than once you must reset the
pointer back to the beginning. This is
done with the RESTORE instruction.

There are two ways of using it - to
start reading the data from the begin
ning simply use RESTORE, but to start
reading at a particular line number use
something like RESTORE 2000 where
2000 is the line number.

It is important to remember that you
can only restore to the start of a line,
but Basic's data pointer can be any
where along a line.

New sets of data must therefore

always start at a new line.
Let's now consider the metric con

version utility. There are two ways of
looking at this: Experts would call it
contrived, beginners complex and
know-it-alls elegant. In fact it has
elements of all three. As a program it
illustrates many of the points already
discussed and brings in a few new
ones. Most interestingly though, it is
expandable.

It makes use of a simple set of data
and a few rules to ensure the data can

be expanded easily. When run, it
presents a menu of seven items, six of
which are the conversions and the

seventh a neat exit to Basic. New con

versions can be added between lines

440 and 450, and these will be

included automatically. You should
always aim to make your programs
expandable like this if possible.

Here is how it works: Lines 10-60 set

up the program and count the number
of data elements. Lines 70-80 reset the

data pointer and dimension the arrays.
Lines 90-150 read the data in to the

arrays. Lines 160-260 print the menu of
options. Lines 270-370 calculate the
conversion. Lines 390-450 contain the

data.

The conversion routine makes use of

some string slicing to make the pro
gram's output more interesting. As an
exercise see if you can work it out for
yourself.

Handling data

TO further illustrate the use of 10 REM Anagrams
READ and DATA here is a short 20 '
program that prints anagrams on 30 REM Initialise
the screen. It prompts you to solve 40 READ r\7.
it and enter the correct word: 50 DIM uord$(n!!),y$(ni!)

The bulk of the listing is fairly 60 FOR iX=1 TO n7.
simple, but there are a few lines 70 READ word$(i/!)
that may require a bit of thought to 80 w$(i%) =word$(i!i)
work out what is going on. The 90 FOR j%=1 TO 10
words are stored in data state 100 pM +INT(RND*LEN(w$(i
ments at the end of the listing and %)))
they are preceded by a single data 110 w$(i%)=HID$(w$(i%)/p%
item indicating the number of ,1) +LEFT$(w$(i/0,pM)+MID
words present. S(w$(iX),p%+1)

The first task the program per 120 NEXT
forms is to read the number of 130 NEXT
words into the variable n%. Two 140 '
arrays are then dimensioned - one 150 REM Print anagrams
for the word (wordS) and one for 160 CLEARW 2
its anagram \wS). A FOR ... NEXT 170 WHILE NOT bored
loop reads each word into words 180 PRINT
and another FOR ... NEXT loop 190 p%=1+INT(RND*n%)
scrambles a copy of it in wS. 200 PRINT "Anagram = ";w$

Lines 100 and 110 are quite (pX)
210 INPUT "Word = ";guesscomplex. The first picks a letter in

the word at random and the $
second puts it at the front of the 220 IF guess$=word$(pJ!) T
word. This process is carried out 10 HEN PRINT "* Correct *" EL
times and the result is that the let SE PRINT "* Wrong *"
ters become scrambled. 230 WEND

The WHILE ... WEND loop 240 '
towards the end of the listing picks 250 REM Number of words..
a word at random and prints its 260 DATA 5
anagram. 270 '

Your guess is compared to the 280 REM List of words...
word and the appropriate message 290 DATA ATARI, COMPUTER
is printed via an IF ... THEN ... ELSE 300 DATA SOFTWARE,DISC
statement. 310 DATA KEYBOARD

Desk File Run Edit Debug
LIST =0UTPIIT==== K

23B UEKD I
248 '
258 REM Rinher of words.,.
%A DAtA S Anagran : DREAEDVB

lord : ? KEVBOARD
Lvv 1711111 J

278 '
288 RED List of words.,. < Correct *
298 DATA ATARI, COMPUTER,DISC
388 DATA SOFTWARE, KEYBOARD Anagran : RIAAT

lord : ? 1 J
,t,i. i^fTm

ton AND

Ok load NSTBASIC.NEMSAHAGRAtl. BAS
Ok LIST
Ok RUN

The output from Anagrams

Harnessing Gem

The Graphics Environment Manager on
the ST is still a mystery to even the
most accomplishedprogrammer. In this
section we'll reveal some of its hidden

power and demonstrate, with C's flexi
bility, how to incorporate its friendly
user interface into your own programs

The history of Gem
gave PC users a powerful wimp system very similar to that
supported by Apple.

Later, when Jack Tramiel was presiding over the develop
ment of his new 68000-based computer, he decided to make
things easy for potential customers by incorporating a ver
sion of Gem into the machine, and the Atari ST as we know

it was born.
y

FEW years ago you had to be a veritable expert ifyou
wanted to use a micro. Even simple operations such
as formatting a disc or printing out a file required a

considerable and fairly detailed knowledge of computer
theory.

At first this was acceptable as the majority of users were
enthusiasts who actually enjoyed unravelling complicated
procedures. But as time went by people started buying
computers for far more practical commercial reasons.

Many users weren't the slightest bit interested in how the
computer worked. What they wanted was a system which
enabled them to directly apply the computer to their own
individual problems with the minimum of effort. Research
was therefore conducted to discover new and simpler ways
of using computers.

One of the major contributors to this project was Rank
Xerox. Its Palo Alto laboratories invented, almost single
handedly, the ideas of windows, icons, menus and pointers -
wimps - as a way of providing an effective computing
environment with a strong visual element. It allowed almost
anybody to intuitively operate a computer.

This wimp technology was further developed by Apple
into its innovative Lisa and Macintosh computers. Unfor
tunately it wasn't a great deal of help to the vast majority of
business users who were using mainly IBM PCs.

Digital Research eventually came to their rescue with its
graphic environment manager, Gem. For the first time this

Gem on the ST

p

EM has been one of the most crucial factors in the

ST's success because it harnesses the sheer power of
the ST, straight from the user's fingertips. In this

section we'll be showing you how to access the many
powerful facilities of Gem from within your own C programs.

The reason we're using C, incidently, rather than
something like Basic, is simply because it's ideally suited for
the job. Pascal or Modula-2 programmers will, however,
have no difficulty adapting the information to their own
particular requirements.

The structure of Gem

NY wimp environment needs to perform two separ
ate functions. Firstly, there has to be a standard
method of drawing objects such as circles and boxes,

and moving them around on the screen.
Gem provides you with a set of routines known as the

The menu bar The desk accessory menu Icons

A folder

containing
programs

and data

The Gem desktop

Gem windows Data file Executable files

Harnessing Gem

virtual device interface or VDI for this purpose. This supplies
you with all the building blocks you need to create a wide
range of impressive graphical effects.

It was originally designed to be device independent,
which means you can generate graphics which will work
equally well in all three of the ST's screen resolutions, or
indeed on any other machine running Gem.

In theory you can also output graphics directly to other
devices such as graph plotters, but unfortunately this facility
has yet to be fully implemented on the ST.

The second major requirement is to allow the programmer
to readily manipulate the windows, icons, menus and poin
ters which collectively form the heart of the wimp system.
Gem contains a useful library of functions to simplify this
process, called the application environment services or AES.

J7

WO distinct types of programs are supported: Appli
cations and accessories. The former is just another
name for a normal Gem program which you can

execute directly from the desktop.
In contrast, accessories are loaded automatically

whenever the ST is booted up. They can be accessed almost
instantaneously from a special Desk menu incorporated into
both the desktop and most other applications.

The ST uses a special part of the filename known as the
extension to determine the nature of a program. The three
characters after the dot can be one of several possibilities.

PRG or APP indicates an application, and ACC denotes an
accessory. TOS or TTP indicates a program that doesn't use
Gem. All other extensions such as DOC or C are treated by
the ST as files containing data.

Initialisation

R I EFORE you can write a Gem program you have to
perform a fairly involved sequence of steps to initia
lise both the AES and the VDI. The procedure varies

slightly depending on whether you wish to create an appli
cation or a desktop accessory.

Since applications are by far the easiest to understand,
we'll temporarily restrict ourselves to these programs. The
first thing you need to do is define a set of five arrays for

The menu bar

fl\ File Edit Block Style Help

Gem's exclusive use. These should be placed at the start of
your program like:

int contrl[12]; /* Tells Gem which */

/* function to exec */

int intinC128]; /* List of integers */

/* to be input */

int ptsin[128]; /* List of screen */

/* coords input */
int intoutC128] , /* Integer results */

int ptsout[128] /* Coordinates */

/* returned */

One slight snag with these arrays is that the various different
C compilers define an integer inconsistently. The integers
used by Gem range from -32768 to +32767, so if your C
compiler uses numbers larger than these, you should
precede them with the instruction short.

To set up the contrl array in Metacomco's Lattice C, for
instance, you would therefore write:

short int contrlf_12]

Installing the application

HE next step is to inform Gem you wish to install a
new application into the system. This is necessary

. because a number of different programs can reside in
memory at the same time, though only one can actually be
running at once.

Since each individual program can have its own set of
menus and windows, it's essential for Gem to be able to tell
precisely which routine is executing. This is facilitated by the
two functions app/Jnit/J and appl_exitjj, which initialise,
and exit an application respectively.

Every application has a unique identification number.
Generally this isn't particularly useful, but if you do need it
you can use the appljnitll function like this:

ap_id=appLinit();

where apjd is a short integer. Normally this will be positive,
but in the unlikely event that it is negative, it signals that the
maximum number of applications has been exceeded, and
your program should be aborted.

An application running
in a Gem window

Helcone to 1st Hard fron GST Software,
the professional ward processing package
designed especially for your Atari ST
conputer and the OEH operating
environment.

1st Word is suitable for all word
processing tasks, fron a sinple neno or
letter to an 80 page report, and is
particularly useful in an environnent
where docunent cut and paste is a cannon
activity. 1st Hard can also be used to
prepare forn letters for nail nerge
operations with 1st Hail, which is
available as an optional extra fron
GST Software.

A desk accessory

Running an application and an accessory

_

-

Handling Gem graphics

Initialising the VDI

FTER we've installed our application we have to
specify which output device we wish to use for our
graphics. This may seem rather silly, as the only obvi

ous choice would appear to be the screen, but Gem theo
retically also has the ability to draw graphics directly on to
plotters and laser printers.

In order to do this, it uses a function called open work
station - v-opnwk/J - which loads a separate program
known as a device driver from disc. This holds the infor
mation the ST needs to allow it to generate all the various
screen effects on a particular device. Regrettably, since these
extra device drivers are not yet widely available, this func
tion is currently pretty useless.

So how do we tell Gem we wish to display our graphics
on the ST'sscreen? Well, there's a separate instruction called
graf-handle which returns an identification number for the
screen known as the physical handle:

handle = graf_handle(8char_height,
&char_width,Bcell_height,&celLwidth);

The variables char-height, char-width, cell-height and
cell-width simply return the height and width of each cha
racter, plus the size of the rectangular box it occupies. If this
data isn't needed you can save some space by using the
same variable in all four positions like this:

handle=graf_handle(Sd,8d,8d,8d);

Don't forget to define the variables handle, char-width,
char-height, cell-height, cell-width, or d as integers before
you use them. MostGem programs will happily work in any
resolution. This is only possible because of a special function
called v-opnvwk - open virtual screen workstation for
technically minded readers.

This automatically finds out the precise dimensions of the
screen, and how many colours can be displayed on it. It uses
two arrays of integers, commonly called work-in and work
out which you should define at the start of the program:

int work_in[11];
/* This holds a list of data */
/* to be input to v_opnvwk */

int work_outC57];
/* This returns the screen */
/* size along with a number */
/* of other useful results */

A listof the usual contents of these arrays can be found in
the adjoining tables. As before, these definitions should be

work-in[0] Device identifier, screen= 1
work-in[1] Line type, 1-7
work-in[2] Line colour, 0-15, 1-3, or 0-1

depending on resolution
work-in[3J Mark type, I-6. Used with

polymarker functions
work-in[4] Mark colour

work-in[5] Character fonts. 1=standard, others
not included

work-in[6] Text colour
work-in[7] Fill type, l=solid, 2=dotted,

3 = hatched

work-in[8] Fill index, 1-24 depending on fill type
work-in[9] Fill colour

work-in[10] 1=NDC coordinates (32,767 x
32,767 (not implemented), 2 = normal
raster coordinates 640 x 400, 640 x
200, or 320 by 200 depending on
resolution

Input parameters for v-opnvwk

The Operating System - Tos

The Atari ST's operating is in many ways similar to CP/M
68k, and has built-in extensions to handle the mouse,
Midi interface, intelligent keyboard controller and joy
sticks. Gem - the graphics environment manager -
provides extra support for windows and graphics
through four separate modules called the VDI, AES, Bdos
and Bios.

The first three are machine independent and are the
same on any micro supporting Gem, but the last module
- the Bios - is machine specific, and contains the input/
output code and primitive, but extremely fast, graphic
A-Line routines for drawing pixels, lines and sprites on
the screen.

The Bdos enables access to the disc drive and file
management system. The AES - application environment
sevices - is a multi-tasking system using a time-slicing
technique. It provides a series of utilities that handle
graphic based inputs such as icons, file selctors and
menus.

The VDI - virtual device interface - provides a set of
graphic functions that are independent of physical
hardware. It enables you to define the workstation par
ameters governing the font and window size, define and
output graphics to a device, draw lines, arcs, fill shapes,
justify text.

BIOS

Input/
output
and A-Line

routines

TOS

The operating system

BDOS

Disc
operating
system

VDI

Virtual

device

interface

AES

Application
environ

ment

services

preceeded by short if required by your compiler.
Although you can in practice alter the screen attributes by

directly manipulating the data in the work-in array, the
reliability of this can't be guaranteed. It's much easier to
simply initialise the first 10 integers of the work-in array
with one using a loop, and work-inf10]with two to specify
that the ST should use normal (raster) coordinates for all
graphical operations.

You can now change any of the colours, or fill types,
directly using a separate set of attribute functions. The
following fragment of C code demonstrates the use of this
procedure.

for(i=0;i<10;i++)
work_in[i]=1;
work_i nC10]=2;
v_opnvuk(worLin,8handle,work_out);

This completes the Gem initialisation process.

work-out[l] Pixel width of screen

work-out[2] Pixel height of screen
work-out[5] Number of text sizes

work-out[6] Number of line types
work-out[7] Number of line widths

work-out[8] Number of mark types
work-out[9] Number of mark sizes

work-out[10] Number of character sets
work-out[11] Number of patterns
work-out[12] Number of hatch types
work-out[13] Number of colours

The most useful results of v-opnvwk

Handling Gem graphics

Accessing the VDI

N important side effect of v-opnvwk is to take the
physical handle produced by graf-handle(l and
return a separate screen identifier for each appli

cation.

In the example I've stored this data in the variable handle.
You need to use it whenever you wish to access any Gem
functions. Here are a couple of typical VDI functions which
illustrate this technique:

V .gtext(handle,x,y, Some text...");

/* A standard graphic text */

/* function, li ke Basi c's */

/* PRINT AT(x,y) */

V _ci re e(hand le ,x,y,radius);
/* This routine prints a fi Iled */

/* ci rele at x, y, with radius r */

If all this looks rather too complicated, don't panic,
because the same code can be used again and again,
whenever you create a Gem application. To make things
even easier I've written two procedures called gem-on//,
and gem-offl)which enable you to enter and exitGem from
just a single line.

The comments are for your information only, and don't
need to be typed in, and remember to define the variables
char-height, char-width, cell-height, cell-width and the
arrays work-in and work-out, before you use these
routines:

Try this...

HE following listing gives you a small taste of the
graphics capabilities of the VDI. We'll see shortly
precisely how the functions work, and I'll show you a

number of other useful VDI commands:

/* Simple Gem demonstration written in
Megamax C. Shows how Gem is initialised
and how VDI text and graphics functions
can be cal led */

#include <stdio.h>

int contrl[12l;
int intin[128];
int ptsin[128];
int intoutC128];
int ptsoutC128];

int handle; /* Working storage */
int char„height, char_width;
int celLheight, celLwidth;
int work_in[11], nork_out[573;
int x,y,radius;

/* Gem arrays ... */

/* short int for */

/* Hetacomco C */

mainO

{

int s;

/* Main program */

gem_on (); /* Ini tialise Gem */

v_clrw k(handle); /* Call VDI to */

/* clear screen */

x=160; /* Experiment with */

y=100; /* di fferent x,y */

radius = 60; /* and radius */

/* Draw filled ellipse at coords x,y
with radii radius and radius*2. Fi 11

colour defaults to black (1) */

v_eLLiose(handle,x,y,radius*2,radius);

/* Call an attribute function to make

the fill col our white (0) */

gem_on()
{

int I; /* Define counter */

appLinitO; /* install application */

/* Get device number for screen */

handle = graf_handle(8char_height,
8char_width,8celLheight,
ScelLwidth);

/* Load work.in array with */
appropriate values */

fort I = 0; I < 10; I++)
work_in[I] = 1;

work_in[10] = 2;

/* Find screen resolution and */
/* return the screen identifier */

/* to be used in application */
v_opnvwk(worLin,8handle,work_out);

}

gem_off0
{

/* Inform Gem we don't need the */
/* screen identifier any more */

v_c Lsvwk(handle);

/* Tell Gem we are exiting from */
our prog ram */

appLexit();

s=vsf_color(handle,0);

/* Draw a white filled circle inside */
black ellipse */

v_circle(handle,x,y,radius);

/* Print some text inside the circle */
v_gtext(handle,x-50,y+4,"Atari ST");

gem_off(); /* Turn off Gem */

/* Press a key to return to desktop */
s = getcharO;

}

gem_on()
{

int I;

appLini t();
handle = graf_handle(Schar_height,

8char_width,Scell_height,
ScelLwidth);

for(I =0;R10;I ++)
work_in[I] =1;

work_inE10]=2;
v_opnvwk(work_in,8handle,work_out);

}

gem_off0
{

v_cIsvwk(hand Ie);
appLexi t();

}

^

~

_

Filling with style

The attributes

HE short example program we looked at earlier used
the mysterious vsf_color command to change the
colour of a filled circle. We'll now go on to discuss the

various attribute functions which make this possible.
The VDI supports a number of routines which allow you

to determine precisely how graphics should be drawn on the
screen. These range from simple things such as the ability to
set the colour of lines, to the creation of complex user
defined fill patterns. Let's start off by talking about the VDI
set fill attribute (vsf) routines.

The VDI provides a variety of functions which enable you
to select either the pattern or the colour used by fill oper
ations. The most straightforward is vsfjcolor, which sets the
fill colour to a specific value. The following examples illus
trate this:

/* set the fill colour to white */
s = vsf_color(handle,0);
/* draw a white ci rcle at 10,10 */
/* with radius 15 */
v_circle(handle,10,10,15);
/* set the fill colour to black */

s = vsf„color(handle,1);
/* draw a black ellipse at 10,10 */
v_ellipse(handle,10,10,7,15);

Notice that vsfjzolor returns a result in s indicating the
colour that has actually been used by the function. Normally
this will be exactly the same as the one you have designated
in the instruction. But supposing you have written a pro
gram to work in one resolution, and someone tries to
execute it in a different one? In this case, the colour you wish
to use might not be available, and the VDI will be forced to
choose another value.

In some circumstances this may be inappropriate. The
information in s allows you to test for this eventuality, and
therefore avoid any difficulty. Incidentally, when you call this
function, don't forget to use the American spelling of the
word colour.

Fill styles

O far, all the examples have assumed we wish to fill
our objects with one solid colour. We can however,
use a number of other patterns. These can be split

into four distinct groups: Solid, dotted, lined, and user.
Dotted patterns consist of an artisticallyarranged assort

ment of dots, whereas lined patterns are basically composed
of straight lines. In addition there's also a special user mode
which gives us the ability to define our own custom-built fill
types. This mode is rather complicated and we'll consider it
later.

When we initialised Gem with the gem-on function we
effectively set the fill type to solid. Ifwe want to change this

situation we use a function called vsfjnterior. This takes a
number from one to four to determine which new fill pattern
is to be selected:

1 Solid

2 Dotted

3 Lined

4 User

If we want to inform the VDI that all future fill commands

should be dotted, for instance, we would use:

vsf_interior(handle,2);

As before, vsfjnterior returns a value in s. This will be set to
the fill type you have chosen - two in the above example - if
the call was successful.

We now need to pick the fill style using vsf_style(). This
gives you a choice from a wide range of different fill patterns
- you can use any one of 24 dotted fills, and 12 separate
lined styles:

/* Select fill type 4 */
s = vsf_type(handle,4);

In order to set the fill attributes we therefore have to call
each of these vsf functions in turn. Since C is an extendable
language the three operations can be combined into one
small C procedure:

fiILsty e(type,index,col)
int type
{

,index,col;

/* s is s dummy variable, as we */

/*

i

don't

it s;

need the result */

/* set f 11 type */
s = vsf_interior(handle,type);

/* choose style */
s = vsf_ stylediandle, index);

/* selec fill colour */
s = vsf_color(handle,col);

}

We can simplify this routine still further with a few defines
which allow you to use the actual name of the fill type when
we call our function, instead of just a meaningless number
like:

#define solid 1

#define dotted 2

#define lined 3

#define user 4

/* Set style 12 ol dotted using */
/* colour black */

filLstyle (dotted, 12,1);

Normally all filled objects are bounded with a line of the
fill colour. This feature can be turned off using a function
known as vsf perimeter. The action of this routine can be

iV) ffll f'A ,''•.'

9MtfJ
\Af 'J J W VT \jj "TV y \J X/ V -.r

A A "5 A '"y "I

1Sa ka

Fill type 2

Fill type 3

The dot and line fill patterns

A
\ / \ v>

K 0 •

H
v

d t y/
i \ i i /

\n // tx

V V

f\

Filling with style

readily seen from these examples:

/* Switch perimeter off */
s = vsf_perimeter(handle,0);
/* Activate perimeter - default */
s = vsLperimeter(handle,1);

A demonstration of this function can be found in the

program below (Listing I).
To test this, remove the comments around the line:

/* s - vsLperimeter(handle,0); */

Improving readability

NE of the major problems encountered when writing
Gem-based programs involves the complex and
unfriendly names the original programmers have

given to even the simplest of functions. Not only does this
make our programs almost unreadable, but it also slows
down the process of typing in program listings.

Fortunately we can easily get around this difficulty by
making extensive use of the C preprocessor. Let's take the
v-clrwk function used to erase the screen as an example.
Although this isvery easy to use, it's absolutely awful to look
at. You can however, readily utilise the define instruction
from C to substitute every els in your program to
v_clrwk(handle) before it is compiled like:

#define els v_clrwk(handle)

will be cleared exactly as if you had input vjrlrwk/handlej.
Another approach is to incorporate the Gem function into

a new procedure with a more readable name like:

at(x
int

char

{
v_gt

}

y,string)

stringD;

ext(handle, «,y, string);

This function can now be used in the following manner:

at(10,10,"Text at coords 10,10");

Initialising Gem

HE program below (Listing II) is a routine which
displays all the different fill types on the screen at
once. All the Gem initialisation code is in a special

include file called GEM.H which should be saved on the disc
before you try to compile the main program. Users of
Megamax C should take care to ensure that GEM.H is placed
in the directory HEADER.

An extra line is included in GEM.H for people with Lattice
C which allows them to type in the program without modifi
cation. Note that, in order to get all the patterns on the
screen at once, the program is restricted to medium or high
resolution. If you want to run it in low resolution you'll

So all you have totype in your program is els; and the screen therefore have to make a few minor changes to the routine.

THIS IS LISTING I

/* Show fill styles */
/* Needs High or Medium Res */

#include <stdio.h>

#include <gem.h>

/* Working Storage */
int coord[4];

/* Main program */
mainO

{

int i;
genuonO; /* Initialise GEM */
els; /* Clear Screen */

/* i=vsf_perimeter(handle,0); */

at(188,15,"List of fill patterns");

at(280,45,"Fill Type 2");
/* Dotted patterns */
for(i=1;i<25;i++) {

fill_style(dotted,i,1);
ellipse((i-1)*26+10,70,10,20);

}

at(280,135,"Fill Type 3");

/* Lined patterns */
for(i=1;i<13;i++) {

filLstyle(lined,i,1);
ellipse((i-1)*52+21,160,15,20);

}

genLoffO; /* Leave GEM */
at(200,192,"Press <RETURN>");
i=getchar(); /* Press a key */

}

ellipse(x,y,w,h)
int x,y,w,h;
{

v_ellipse(handle,x,y,w,h);
}

Listing I

THIS IS LISTING II

/* GEM Include file version 1.1 */

/* Defines */
#define els v.clrwk(handle)
#define solid 1
#define dotted 2
#define lined 3

#define user 4

/* Define for Lattice C*/
/* #define int short */

/* GEM Arrays */
int contrlE12],intin[128],ptsin[128];
int intout[128],ptsout[1281;

Listing II

/* Working Storage */
int handle,ch,cw,bh,bw;
int work_inC11],work_out[57];

/* GEM functions */

gem_on()
{
int I;
appLini t();
handle=graf_handle(8ch,8cw,8bh,8bw);
for(I=0;K10;I++)

work_in[I]=1;
worLin[10]=2;

v_opnvwk(work_in,8handle,work_out);
}

gem_off0
{

v_c Lsvwk(hand le);
appLexitO;

}

at(x,y,string)
int x,y;
char stringCl;
{
v_gtext(handle,x,y,string);
)

fil

int

{

in

/*

s=

/*

s

/*

s

}

Lstylettype,index,col)
type,index,col;

t s;
set fill type */

vsf_interior(handle,type);
set fill style */
vsf_style(handle,index);
set fi 11 colour */
vsf_color(handle,col);

_

Drawing polygons

w
v

e have used only a fraction of the VDI's power so far
in our C programs, so we'll move on now to look at a
couple of the more exciting features supported by it.

We'll begin by discussing its polyline functions. These give
you the ability to draw a wide variety of many sided shapes
on the screen. Each polygon can consist of anything up to
127 lines, connected together to form an enclosed surface.

The simplest example of such a polygon is the triangle, and
ifyou wanted to plot one in Basic you would use an instruc
tion such as:

LINE x1,y1 TO x2,y2 TO x3,y3 TO x1,y1

where xl,yl, x2,y2, x3,y3 are the coordinates of each of the
triangle's corners. Notice how the LINE statement can take a
variable number of coordinate pairs. This enables you to use
one function to produce anything from a line, to a complex
polygon.

Unfortunately, C functions need to know in advance
precisely how many parameters are to be passed every time
they are executed. This means the VDI must take a rather
different approach, and it stores all the coordinates of the
polygon in an array. You can pass the entire array to your C
routine like this:

v_pline(handle,n,coord);

The v_pline function reads n pairs of coordinates from the
array coord, and uses them to draw a polygon with n-\
corners.

The reason the number of lines is one less than the

number of points is that v_pline draws a line from the first
pair of coordinates to the second, the second pair to the
third, and then successively repeats this procedure until it
runs out of data. This means that in order to draw three lines

on the screen you need to specify four pairs of coordinates.
Just as in the LINE statement above, if you want to create

a closed polygon rather than an unconnected jumble of lines
you should remember to set the last pair of coordinates to
the starting point of your object.

Incidentally, the minimum number of points allowed by
v_pline is two. You can therefore also utilise this function to
draw a single line. Here is a small C procedure which uses
v_pline to draw a triangle:

triangle(x1,y1,x2,y2,x3,y3)
int x1,y1,x2,y2,x3,y3;
{

/* Load in each pair of coordinates
/* into coord array
coord[0] =x1; coordL 1]=y1;
coord[2]=x2; coord[3]=y2;
coord[4]=x3; coord[5]=y3;
/* Set the Last coordinate pair to
/* the start of the triangle
coord[6]=x1; coord[7]=y1;
/* Call the polyline function
v_pline(handle,4,coord);
}

User Defined Fills

€iiiliS>

iira

Press {RETURN)

An output from the Polyline program overleaf

Don't forget to define the coord array before calling this
routine with:

int coordf.8];

As a general rule the size of the coordinate array should
be set to [n+ 1)*2, where n is the number of sides in your
polygon. The v_pline function is fine for drawing hollow
objects, but the VDI also provides a separate function to
create filled polygons as well. This is called v^fillarea, and is
used in exactly the same way as v_pline.

An example of vjillarea can be found in the following C
function which draws a filled quadrilateral on the ST's
screen:

quad(x1,y1,x2,y2,x3,y3,x4,y4)
/* Define 4 coordinate pairs */
int x1,y1,x2,y2,x3,y3,x4,y4;
{

coord[0]=x1;coord[1]=y1;
coord[2]=x2;coord[3]=y2;
coord[4]=x3;coord[5]=y3;
coord[6]=x4;coord[7]=y4;
/* Load the start coordinates into */

/* the last part of the array */
coordC8]=x1;coord[9]=y1;
/* Call v_fillarea with 5 sets of */
/* coordinates */
v_fiIlarea(handle,5,coord);
}

Like the other VDI functions mentioned earlier, the fill type
used by vjillarea can be specified using the fill_type routine
from the header file GEM.H. This procedure is also capable of
installing a special user defined fill pattern. We'll now go on
to explore this extremely useful facility.

Defining fill patterns

J7

HE VDI provides the option of using either single or
multicolour fill patterns. Unfortunately, the data
format used by multicolour fills is rather too complex

to create without the aid of a separate drawing program.
In contrast, monochrome fill patterns can be readily

generated by hand with very little effort. We will therefore
restrict our disussion to this type of pattern for the time
being.

Note that although these patterns can only consist of two
colours, they will still work perfectly well in all three graphics
modes.

Before we can go any further we'll need to briefly recap
number bases. If you haven't encountered this notation
before, don't panic.

I'm not about to delve into any of the complexities of the
subject here. All you need to know for the purposes of this
discussion is that binary is a method of representing numbers
using the digits zero and one instead of the more normal
zero to nine.

A standard integer used by C is capable of holding num
bers up to 16 binary digits long.

The reason binary numbers are so important is that they
let you compact large amounts of pictorial information into a
relatively small space.

One possible way this could be achieved, is to use each
individual binary digit to represent either a black or a white
point on the screen. A value of one in the number could
indicate that the appropriate point would be black, and a
zero would signify that it should be set to white. So the
binary number I 1I 100011 11 might be displayed as four
black pixels followed by three white then four black.

This is the storage technique used by the VDI's user
defined fill patterns.

These are arranged in the form of a 16 by 16 square. Since
each horizontal line can be held in a single integer, the entire
fill pattern can be contained in an array of just 16 numbers.

In order to create your pattern, you should first draw your

8

Drawing polygons

object on a 16 by 16 square grid using a 1 for any points you
want to set, and 0 for all the other points. After you have
finished, you should be left with a list of binary numbers.

Unfortunately, most C compilers won't permit you to load
these binary numbers directly into your array. You therefore
need to convert your data into a more acceptable form
before they can be used. The easiest solution to this problem
is to write a small Basic program to translate the pattern into
a sequence of decimal numbers:

10 REM linary to decimal converter
20 FOR X=1 TO 16

30 READ a$

40 binX =32768

50 byte%=0
60 FOR %--] TO 16

70 IF MID$(a$,j/!,1)=T THEN byte%=byteUbinZ
80 bin% =bin%/2

90 NEXT

100 IF if MOD 4 THEN PRINT byteX;","; ELSE PRIN
T byte/!
110 NEXT

120 DATA 1000000000000001

130 DATA 0100000000000010

140 DATA 0010000000000100

150 DATA 0001000000001000

160 DATA 0000100000010000

170 DATA 0000010000100000

180 DATA 0000001001000000

190 DATA 0000000110000000

200 DATA 0000000110000000

210 DATA 0000001001000000

220 DATA 0000010000100000

230 DATA 0000100000010000

240 DATA 0001000000001000

250 DATA 0010000000000100

260 DATA 0100000000000010

270 DATA 1000000000000001

This prints the following list of numbers:

32769 , 16386 , 8196 , 4104
2064 1056 , 576 , 384
384 , 576 , 1056 , 2064
4104 8196 , 16386 , 32769

You can now enter this into your C program as an array

definition like the following:

pattern[] =(32769,16386,8196,4104,
2064,1056,576,384,
384,576,1056,2064,
4104,8196,16386,32769
>;

This data can then be installed as a user defined fill pattern
using the statements:

fi ILtype(user,0,1);
vsLudpatthandle, pattern,!);

Since vsf_udpat is a rather horrible name, you can easily
change it to something more readable with:

?=define mypattern vsLudpat

This allows you to replace the above call with the far
friendlier:

mypattern(handle,pattern,!)

The number I in this instruction specifies that only one bit
plane should be used. If we wanted to create multicoloured
fill patterns we would change this number to either 2, (four
colours) or 4 (16 colours). Our fill pattern would now need
one set of 16 integers for each plane.

Every individual digit in these bit planes would then be
combined to generate the larger numbers required to hold
the extra colour information.

A practical example

HE following C listing shows these new functions in
action. The include file GEM.H is identical with the

one used on Page 6 of this section, so if you haven't
typed this in, you must enter and save it.

If you look closely at the definitions for triangle and quad,
you will notice that the variables x or y has been added to
every coordinate before it is entered into the coord array.
These variables are used to automatically convert the coordi
nates used in low resolution into the appropriate values for
all three graphics modes.

/* Gem polyline functions */

•'include <-stdio.h>

*include <.gem.h>
"define mypattern vsf-udpat

int coordC16];
int maxx,maxy,minx,nnny;
int x,y;

/* Fill patterns */
int stuser_pattern[]=(0,7998,4104,
4104,7944,264,264,7944,0,22391,

21573,21621,22342,20805,30581,0);

int st.pattern[]=(0,0,32510,16400,
16400,16400,16400,32272,528,528,528,
528,32272,0,0,65535);

int square_pattern[] =(65535,65535,.
32769,32769,32769,32769,32769,32769,
32769,32769,32769,32769,32769,32769,
65535,65535);

int pat tern[] =(32769,16386,8196,4104,
2064,1056,576,384,384,576,1056,2064,
4104,8196,16386,32769};

maint)

(

gem_on();
els;

/* Get size difference between low

res & current screen */

minx =319; miny=199;
maxx=worLout[0]; maxy=work_out[1];
x=(maxx-minx)/2; y=(maxy-miny)/2;

at(50+x,15,"The POLYLINE function');
triangle(160,50,310,150,10,150);
key();
els;

at(50+x,15,"A filled POLYGON);
quad(160,50,310,100,160,150,10,100;
key();

at(50+x,15,"User Defined Fi lis");
filLstyle(user,0,1);
mypattern(handle,square_pattern,1);
quad(160,50,310,100,160,150,10,100;
key();

mypattern(handle,st„pattern,1);
quad(160,50,310,100,160,150,10,100:
key();

mypattern(handle,stuser_pattern,1);
quad(160,50,310,100,160,150,10,100)

gem_off 0;
key();

)

triangle(x1,y1,x2,y2,x3,y3)
/* Draws an unfilled triangle */
int x1,y1,x2,y2,x3,y3;
(

/* Set coord array to corner points */
coord[0]=x1+x;coord[1]=y1+y;
coord[21=x2+x;coord[3]=y2*y;
coord[4]=x3+x;coordl5]=y3*y;
/* Set last coordinate to start of

triangle */
coord[6] =x1u;coordL7] =yHy;
/* Call the VDI polyline function */
v_pline(handle,4,coord);
}

quad(x1,y1,x2,y2,x3,y3,x4,y4)
/* Draws a filled four sided object

eg. diamond */
int x1 ,y1,x2,y2,x3,y3,x4,y4;
{

/* Load coord array */
coord[0]=x1+x;coord[1]=y1+y;

coord[2]=x2+x;coord[3]=y2+y;
coord[4]=x3+x;coord[5]=y3+y;
coord[6]=x4+x;coord[7]=y4+y;
/* Close polygon */
coord[8]=x1+x;coord[9]=y1+y;
/* Call v_fillarea with 5 pairs of

coordinates */

v_fillarea(handle,5,coord)+y;
}

key()
(

int c;
/* Input a key press and return */

at(100+x,192+y,"Press <RETURN>");
c=getchar();

}

A demonstration of the polyline functions

Windows on the ST

UP until now we have largely restricted our Gem
tutorial to the VDI. Now we will start examining the
AES - Applications Environment Services - with a
simple Introduction to Gem windows. These windows
form the standard backdrop for the majority of Gem-
based programs and can be manipulated In a number of
different ways.

This interaction between the mouse and the win

dows is automatically managed by the AES. Unfor
tunately, the responsiblity of controlling the contents
of these windows is left entirely with the programmer,

Creating a window

HE process of window generation can be split up into
three separate phases. We start off by creating our
window with the wind-create function. This informs

Gem precisely what type of window we wish to use, and
installs it into the ST's memory. The syntax is:

whandle=wind_create(kind,tx,ty,mu,mh);

where whandle is known as the window handle which will

be used for all subsequent windowing operations.
Every window we define has its own unique handle. This

is only relevant to the AES window management functions,
and it is not the same as the graphics handle which we
obtained from v-opnvwkf) during Gem initialisation. Nor
mally whandle will be positive, but if the maximum number
of allowable windows - six - is exceeded, then a negative
value will be returned.

The variables tx and ty establish the coordinates of the top
corner of the window when it is at its largest possible
extension. Similarly, mw and mh are used to set the
maximum size of our new window. Note that these values

are defined in terms of the total area of the window and

include the regions occupied by the Move Bar and sliders.
We specify the type of window to be installed using the

variable kind. Each binary digit of this number fixes the
status of one of 12 different window attributes - shown in

the panel right. If a digit is set to one then the appropriate
attribute will be included in the window definition, other
wise it will be omitted. Each separate option is converted
into hexadecimal and combined with a series of logical OR
operations to form the final result.

We are now able to simplify the entire process by
replacing these numbers with their English equivalents using
the define statement from C. Here is a simple example which
should make this a little clearer. Suppose we had incorpor
ated the following instructions at the start of our C program:

#define TITLE 0x001

#define INFO 0x010

To establish a window with a title and an information line

we could now use an instruction such as:

handle =wind_create(TITLEHNFO,10,10,
100,100);

This would define a window at the top of the screen with a
maximum size of 100 by 100.

Initialising

FTER we've defined our window we must establish

the initial state of the components. This can be done
with the function:

r=wind_set(whandle,option,i1,i2,i3,i4);

where whandle is the handle of the window we installed

and this is really a rather heavy burden.
You can't create a window and then simply forget

about it. Whenever the size is changed or the window
is moved the original contents will need to be redrawn
explicitly by your program. Although you can com
fortably generate a very basic window with only a few
lines of code, you will have to indulge in some fairly
convoluted pieces of C programming to exploit these
windows. As this section progresses you will be
provided with a powerful set of window management
routines which should simplify this considerably.

into the system using wind-create, option determines the
particular operation which is to be performed by this
command.

Any further information which is needed by wind-set is
normally placed in the variables /'/, i2, i3 and 14. Incidentally,
if an error has occurred then r will be returned holding a
value of zero.

In order to keep things simple we'll limit our discussion to
just two of this command's options which enable us to set
the string used by either the title or the information line of
our window.

The original Gem specification required us to split this
string's address between the two variables // and 12.
Fortunately most modern C compilers now allow us to input
the address directly, and then automatically convert this

HERE is a complete list of the various possible window
attributes, along with the hexadecimal numbers with
which they are associated:

Name Hex Function

NAME 0x001 The window is to include a

title in the center of the Move

Bar

CLOSE 0x002 A Close Window box is to be

placed at the top left hand
corner of the window

FULL 0x004 A Full Window box should be

inserted at the top right hand
corner of the window

MOVE 0x008 The Move Bar is to be acti

vated

INFO 0x010 An information line should be

displayed just below the Move
Bar

SIZE 0x020 The Size box is to be drawn at

the bottom right hand corner
of the window

UPARROW 0x040 The up arrow should be added
to the vertical scroll bar

DNARROW 0x080 The down arrow is to be

placed on the vertical scroll
bar

VSLIDE 0x100 The vertical slider should be

drawn on the window

LFARROW 0x200 The left arrow is to be added

to the horizontal scroll bar

RTARROW 0x400 A right arrow should be
placed on the horizontal scroll
bar

HSLIDE 0x800 The horizontal slider should be

displayed

Windows on the ST

data into the correct format during the compilation process.
Look at the following example:

changed whenever the appropriate window is redrawn by
the AES.

Once we have created a window and designated its
various attributes, we can finally display it on the ST's screen
using the AES function wind-open.

/* Option number 2 sets the */
/* title of a window */

/* Megamax and Laser C */
r=wind_set(whandle,2,name,0,0);
/* For HETACOMCO C V 3.04 */

r=wind„set(whandle,2,ADDR(name) ,0,0);

r=wind_open(whandle,x,y,w,h);

where whandle indicates which of the windows currently
installed in memory is to be displayed. The variables x, y w
and h determine the current dimensions. These can be

anything up to the maximum size we specified using our
initial call to wind-create.

Now for a small example:

The title string name can be any string of characters you
have previously defined in your program. It can also be a
literal string such as "My Window". Here are some more
examples of this function:

r=wind_set(whandle,2,"Window ti t le",0,0);

char ti t le[]="Wi ndow 3";

r=wi nd„set(whandle,2,title, 0,0);

/* Display a window created by
wind.create at 10,10 with
dimensions 20 x 20 */

r=wind_open(whandle,10,10,20,20);

Note that wind-open does not erase the contents of the
window. This can occasionally lead to some rather unusual
effects, and it's normally a good idea to clear this area after it
has been drawn.

We are now in a position to summarise the three phases
involved in the creation of a Gem window:

9 Install the window into the system with wind-create.
9 Set each of the attributes in turn using wind-set.
9 Display it with wind-open.

A demonstration of this procedure can be found in the
windopen function included in the listing below.

Similarly, we can also install the information line in the
same way using an option number of three:

r=wind_set(whandle,3,
"Information line",0,0);

It is important to note that the wind-set command loads
the address of the string rather than its contents. Ifthis string
is subsequently modified the title or information line will be

THE example program is split into two distinct parts which should be entered seperately. The first section is a slightly
ammended version of the standard header file GEM.H. The program itself simply displays a window on the screen and
then waits for you to press a mouse button before returning to the desktop.

Program I

I* GEM Include file - MEGAMAX C */

I* GEM Arrays */
/* Defines */

•define NAME 0x801

/* Deline for Lattice C

/* tdefine int short */

/* "define ADDR(a) (Uong)a);
ng)a)80xffff */

/* GEN Arrays */
int contrl[12];
int intin[128];
int ptsin[128];
int intoutC1281;
int ptsoutC128l;

*/

•16,(do

/* Working Storage */
int handle, char _height,c har_w i dt h;
int celLheight,celLwidth;
int workJn[11],work_out[57];

m_on()

Define loop counter I */
int 1;
Tell GEM we wish to instal I

another application */
appLini t();
Get Device Number for screen */

handte=graf_handleCSchar_height,
har_wi dth,See ILheight,ScelLwidth);
Load workjn array with
appropriate values */
for(I=B;I<10;It+)

work_in[I]=1;
work_in[1B]=2;
find out screen res and return

int x,y,h,w;
int s;
mai n()

<

the screen identifier to be */

/* used in this application */
v_opnvwk(work_in,8handle,work_out)

}

geiuoffO
{

/* Inform GEM that we don't need the

screen identifier any more */
v_cIsvwkChandle);

/* Tell GEN we are exiting from our
program */
appLexitt);

)

at(x,y,string)
/* define x,y coordinates */
int x,y;

/* string is a pointer to a string
of characters */

char *string;
{

em_on();
x[l]=1B;wy[11=16;
w[1] =3B8;whm =2B8;
indo[1]=windopen(1,"Gem Window")
=click();
indclosed);
em_off();

}

wi ndopen(n,t itle)
int n;
char *ti tie;
(

int wr,whandle;
/* Create a window */

whandle=wind_create(NANE,wx[n]
wy[n],ww[n],wh[nl);
/* Test for success */

/* Call VDI */ if (whandle<0) return (0);
v_gtext(handle,x,y, string) /* Set title using wind.set opt
> wr=wind_set(whandle,2,ti t le,0
int clickO /* Open window */
{ wr=wind_open(whandle,wx[n],wy

int button,*,)*; ww[n],wh[nl);
button=0; /* Return window handle */

while (button==0) vq_mouse(h and Le, return Cwhandte);
8button,&x,£y);

return(button);
>

>

windclose(w)

int w;

Program II {

int wr,h;
/* Get handle from global array

1* A Gem simple window */ h=windo[wl;
/* Close window */

*inc lude <stdio.h> wr=wind_close(h);
"include <d:\gem.h> /* Delete window from memory */

wr=wind delete(h);
nt windo[8],wx[8],wy[8],ww [81 wh[81; }

2 */

[n],

Creating windows

W

Wiping windows

HEN we have finished with our window we will

ultimately wish to wipe it from the ST's memory. The
AES provides us with two useful functions for this

purpose - wind_close erases the window from the screen. It
can be subseguently redisplayed at any time using a single
call to the wind_open function.

Another important command is wind_delete which
deletes a window definition completely. One side effect is to

RATHER better idea is to assume that every window
contains just the visible portion of a larger "virtual"
screen. You can implement this approach by simply

clipping away the parts of your image which lie outside the
current window before they are drawn. The VDI provides a
useful vs_clip command for this purpose which limits the
action of the VDI's drawing operations to a specific region of
the screen. The format is:

vs_clip(handle,flag,coord);

The handle parameter is the standard screen handle used
by the VDI. Don't confuse this with the window handle
returned by the wind_create function. The flag parameter is
used to control the action of the vs_clip function. A value of
one at this position turns the clipping on and a value of zero
restores the VDI's drawing operations to normal.

The final parameter, coord, is a list of integers used to
determine the position and size of the clipping rectangle.
These numbers hold the coordinates of the interior of our
window.

coord[0] = Top left x coordinate
coordfl] = Top left y coordinate
coord[2] = Bottom right x coordinate
coord[3] = Bottom right y coordinate

Figure II: After setting
the clipping rectangle
the top and bottom
of the circle is clipped
to fit the window

release the old window handle for future use. You should

always remember to call wind_close before using wind_
delete. The format of these two instructions is identical:

r=wind_close(whandle)

r =wi nd_delete(whandle)

In both cases r will be set to zero if an error has occurred.

Look at the following procedure. This calls the vs_clip
function to limit the VDI's drawing operations to a particular
window.

It assumes, of course, that the current dimensions of the
window have been previously placed in the arrays wx, wy,
ww and wh.

wcl ip(w)
int w;

(int coordU];
coord[0]=wx[w];
coord[1]=wytwl;
coord[21=wx[w]+ww[w];
coord[3]=wy[w]+whCwl;
vs_cIi p(hand Le,1, coord);

}

In order to demonstrate how this clipping works take a
look at Figures I and II which show the result of drawing a
filled circle inside a simple Gem window. Figure I is the
undipped version, and as you can see, the circle completely
overwrites the window's borders.

If however, the drawing is clipped using vs_c/ip, only the
parts of the circle which lie inside the window will be drawn.
This can be readily observed from Figure II.

Figure I: The undipped
circle overwrites the

window border

11

12

Creating windows

Scaling images

S we have stressed, the overall responsibility for the
management of a window's contents rests entirely
on your shoulders. This task is complicated by the fact

that the VDI doesn't completely understand about Gem
windows. You are therefore forced to generate all your
graphics using absolute screen coordinates. So you can't
simply draw something inside a particular window, irrespec
tive of its size and position on the ST's screen.

There are two possible solutions to this problem. First, you
can write a special routine to scale your image to the correct
size before you draw it. This effectively treats each window
as just a miniature version of the entire screen.

Unfortunately, this technique is only really useful when
you are displaying an actual picture of some sort. If you
attempted to output a piece of text to such a window the
contents would rapidly become totally unreadable.

Calculating window sizes

I T is important to remember that each window is
J effectively defined by two different sets of coordi-

tj— »1 nates. Oneholds thetotal dimensions ofthewindow,
and includes the regions occupied by the title line and the
window borders. These are the coordinates which are

required by the wind_create and wind_open functions
during window initialisation.

Additionally, there's also a second set which represents
the inner working area of this window. It is these coordi
nates which are used in conjunction with the vs_clip
command. When we are manipulating a window it's often
useful to be able to convert between the working coordi
nates and the total coordinates. The AES incorporates a
helpful function called windjzalc which performs this oper
ation for us directly:

r=wind_calc(flag,type,wxin,wyin,wwin,
whin,8wxout,8wyout,8wwoLit,8whout);

The parameter flag determines which of two possible
operations are to be performed by this function. A value of
zero indicates that the coordinates of the working area of
the window should be converted into the total area. Alter
natively, you can also calculate the working area of the
window from the total area by setting the flag to one.

The next parameter, type, consists of a bit field represen
ting the window attributes you have selected. The format is
identical to the equivalent parameter used by the wind_
open and wind_create functions.

Before the wind_calc function can be called, wxin, wyin,
wwin and whin must be loaded with the appropriate input
coordinates. These may hold either the working area or the
total area, depending on the precise operation you have
selected.

Once the calculation has been performed, the resulting set
of coordinates will be placed in the variables wxout to
whout. If an error occurred during the function, a value of
zero will be returned in r. Any other number indicates that
the operation was a success.

At first glance windjzalc may look extremely complicated,
but in practice it's surprisingly easy to use. Here are a couple
of simple examples which should make things a little clearer.
Supposing wx.wy.ww and wh currently hold the total
coordinates of a window. You could convert these into the
coordinates of the working area using a line like:

r=wind_calc(1,TITLE,ux/wy,ww,wh,Swx,
8wy,8ww,8wh);

The variables will now contain the working coordinates of
the window. These could then be used in a subsequent call
to vs_clip. Similarly, you could convert these new coordi
nates back to the total area like so:

r=wind_calc(0,TITLE,wx,wy,ww,wh,8wx,
8wy,8ww,8wh);

Now for a somewhat larger example.

/* D

int

/* d

int

/* S
wx=5

wy=5
ww=1

wh= 1

/* C
whan

/* 0

r =wi

/* S

r =wi

/* G

P

r=wi

8

I* A

vs_c

/* D

V_C 1

efine clip array */
cpC43;
efine working variables */
wx,wy,ww,wh,r,whandle;
et the coords of total area */

reate window using coords */
dle=wind_create(NAME,wx,wy,ww,wh);
pen the window */
nd_open(whandle,wx,wy,ww,wh);
et name of window */
nd_set(whandle,2,"Ti t le");
et coordinates of working area and

ace them into clip array */
nd_calc(1,NAME,wx,wy,ww,wh,
cp[0],8cp[1],8cp[2],Scp[3]);
ctivate clipping */
lip(handle,1,cp);
raw circle inside window */

rclefhandle,150,150,100);

Note that the above routine will not compile as it cur
rently stands, as it omits a large chunk of essential Gem
initialisation. Ifyou're feeling adventurous however, you can
easily expand this fragment into a real program.

itations

NE serious limitation of the wind_calc function is that

it assumes that you already know one of the sets of
coordinates in advance. Unfortunately, this infor

mation is often simply not available. In these circumstances,
you can utilise the AES command wind_get. This is a pow
erful function which can return an impressive range of infor
mation about any window which has previously been
defined using wind_create.

The format of the wind_get command is:

r=wind_get(whandle,option,8i1,8i2,
8i3,8i4);

where whandle is the handle of the window you wish to
examine, option indicates one of a number of alternative
operations which can be executed by this command, and /'/,
i2, i3, and 14are a set of variables which will be used to hold
the results. As you might expect, their exact significance
varies considerably, depending upon the particular oper
ation you have chosen. The variable r indicates whether an
error has occurred during the command. Ifa value of zero is
returned, then the call to wind_get has failed in some way.

For the moment we'll restrict ourselves to the two com

mands which are directly relevant to this present discussion.
These are options number four and five, which return either
the working coordinates, or the total coordinates of a
window, respectively.

After these functions have terminated, the appropriate
coordinates will be placed in the variables 11-14 like so:

i1 = x coord of top corner
i2 = y coord of window
i3 = Width of window

i4 = Height of window

The standard use of this command is to determine the
maximum area available from the Gem desktop. This enables
you to position your window so that it doesn't accidentally
overwrite the Gem menu line. The desktop is automatically
assigned a window handle of zero, so if you wanted to
calculate its working area you could call wind_get in the
following manner.

r=wind_get(0,4,8wx,8wy,8ww,8wh);

You can also use this function to work out the area of the

total screen.

r\

O

Putting theory into practice

Multiple windows

\V/ E have learnt a fair bit of theory about Gem win-
J| dows, so now let's put that theory into practice with

an example listing. What we'll do is to define and
open five overlapping windows on the ST's screen. A filled
circle is then drawn inside each one and is clipped using the
wclip function. You can then successively remove each
window from the screen by clicking on the left mouse
button.

The program below has been designed to run in mono
chrome, and if run in other resolutions some of the windows

may be off the screen. Also the GEM.H include file from page
10 in this section is required in order to define some func
tions used by the program.

Changing a window's size

NCE a window has been successfully installed into
the ST's memory its size and position can easily be
changed using an option from the wind_set function.

We first encountered this function during the window
initialisation process, when it was used to set the title and
information line of a window. As before, the format of the
wind_set function is:

rswind_set(whandle,option,I1,12,13,14)

where r is a number returned by wind_set. A value of zero
indicates that an error of some sort has occurred.

The whandle parameter is the handle of the window we
want to change and option is the number of the function we
wish to call. In this case, we will be using option number five.

The variables // and 12 hold the new screen coordinates of

the window and 13 and 14 contain its new size. The call to

change a window's size can be performed with:

r=wind_set(whandle,5,x,y,w,h);

Note that x,y, w and h refer to the total coordinates of the
new window. If the working coordinates are required, they
will need to be calculated in the normal way using the
wind_calc function.

Window manipulation

T HE AES automatically takes care of many of the more
arduous aspects of window management. Whenever
you click on the size box of a window a resizable

outline is displayed on the ST's screen. Similarly, clicking on
the move bar generates a hollow box which can be dragged
around to change the window's position. These movements
are controlled directly from the AES.

It is important to realise, however, that the results of these
actions need to be dealt with explicitly by your own
program.

The AES only informs you that the user has requested an
action - it does not perform that action itself. So if a window
is moved or resized its dimensions will need to be changed
using an immediate call to the wind_set function in your
program.

Events

SPECIAL mechanism is provided by the AES to allow
you to control the various parts of the Gem system. It
takes the form of a series of commands which wait for

a specific event to occur. Most of these events are generated

/* Multiple Windows */ /* Read House buttons */ }

s=click(); }

/* Include Files */ windclose(windoL"i]);
} /* Function to clear a window */

finclude <stdio.h> /* Kill GEH */ clearw(n)

#include <gem.h> gem_of f0;
>

int n;
{

int coord[4];/* Global Arrays */
coord[0]=wx[n];

/* Storage for window coordinates */ /* Function to open a window */ coord[1]=wy[n];
int windo[8],wx[8],wy[8],ww[8],wh[8]; int windopen(n,title) coord[2]=wx[n]+ww[n]-1;
/* Storage for window titles */ int n; coord[3]=wy[n]+wh[n]-1;
char wtitle[8][12]; char *title; vsf_color(handle,0);

{ vr_reef (.(handle, coord);
/* Variables */ int wr,whandle; }

int x,y,h,w,i,j,s; int xs,ys,ws,hs;
/* Calculate exterior size of the /* Function to clip a window */

mainO window specified by x,y,w,h */ wclip(w)
{ wr=wind_calc(0,NAHE,wx[n],wy[n], int w;
/* Initialize GEH */ ww[n],whCn],8xs,8ys,8ws,8hs); {

gem_on(); /* Create a window with a title */ int coord[4];
whandle=wind_create(NAHE,xs,ys,ws,hs); coord[0]=wx[w];

/* Open 5 windows */ if (whandle<0) return(0); coord[1]=wy[w];
for (i=0;i<5;i++) /* Set window name to title */ coord[2]=wx[w]+ww[w]-1;
{ wr=wind_set(whandle,2,title,0,0); coord[3]=wy[w]+wh[w]-1;
/* Set position of wi idow */ /* Open window */ vs_clip(hand Le,1, coord);
wxti]=10+i*20; wyCi =40+i*40; wr=wind_open(whandle,xs,ys,ws,hs); }

ww[i]=200; wh[i =150; return(whandle);
/* Initialize window itle */ } /* Redraw a window's contents */
sprintf(wtitleli]," Wi ndow 7.d",\); redraw(w)

/* Open a window */ /* Function to close a window */ int w;
windo[i]=windopen(i,w itleti]); windclose(w) {

/* Draw fi Ued clipper. circle */ int w; wclip(w); /* Clip window */
redraw(i); { clearw(w); /* Clear window */

} int wr; /* Draw circle */
if (w>0) vsf_co(or(handle,1);

/* Close 5 windows */ { v_circle(handle,wx[w]+ww[w]/2,
for (i=0; i<5; i++) wr=wind_close(w); wy[w]+wh[w]/2,100);
{ wr=wind_delete(w); }

13

14

Putting theory into practice

by an input of some sort.
Typical events include:

• Keyboard event - a character has been typed in at the
keyboard.
• Time event - the AES waits until a certain amount of time

has elapsed.
9 Mouse event- the mouse has been moved into or out of a
rectangular area. This feature is occasionally used to con
struct customised dialogue boxes, such as HiSoft's file
selector.

• Mouse button event - one or both of the ST's mouse

buttons has been clicked.

• Message event - the user has manipulated a window or
accessed one of the Gem menus.

• Multiple event -checks for a whole list of events. This can
comprise of any of those above.

The AES incorporates separate functions for each of the
possible events. So ifyou wanted to ask the AESto wait for a
keyboard event, you could call the evntj<eybd function like
this:

key=evnt_keybd();

where key is just the Ascii code of the key which has been
pressed.

We'll now look at the evnt_mesag routine which waits for
the manipulation of a Gem window. The format is:

evntjesag(message);

Here message is an array of eight integers which will
contain the results of the function. This array must have been
previously defined in your program with a line like:

int message[8];

The evnt_mesag function returns one of a number of
messages which indicate the specific event which has been
detected. The nature of the message can be found in
messagefOJ.

Here is a list of some of the events which can be
generated by a Gem window, along with the expected
results:

Message number 21: WMJTOPPED

A topped message is produced when a new window is
selected with the mouse and message[3] contains the
handle of the new window to be activated. The wind_set
command provides a special function to activate this:

wind_set(whandle,10,0,0,0,0)

where whandle is the handle of the window which has been

chosen.

Message number 22: WM_CLOSED

This code is returned whenever the mouse is clicked on

the Close box of a window and message[3] holds the handle
of the window to be closed. Your program should handle
this event by closing the window using wind_close and
possibly deleting it from memory with wind_delete.

Message number 23: WM_FULLED

This message is generated when the mouse is clicked on
the Full box of the window and message[3] contains the
handle of the window to be fulled. This event can be per
formed by changing the size of the window to the maximum
possible dimensions using the wind_set command.

Message number 27: \X/M_SIZED

The size box has been used to request a new size for the
current window. This must be accomplished directly from
your program with a call to wind_set.

Return values: message[3] contains the handle of the
window to be resized, message[4] is the current X coordi
nate of the window, message[5] is the current Ycoordinate,
message[6] is the new width of the window and message[7]
is the new height of the window.

Message number 28: WMJWOVED

The move bar has been dragged to reposition one of the

windows. This needs to be implemented using an explicit call
to wind_set in your program.

Return values: message[3] contains the handle of the
window to be moved, message[4] is the new X coordinate
of the window, message[5] is the new Y coordinate, mess-
age[6] is the current width of the window and message[7] is
the current height.

The standard way of dealing with these messages is to
place all the code into a simple loop. This can be summarised
by the following steps:
• Wait for a message event (call evnt_mesag\
9 Check for each of the possible window events. The
precise events which need to be tested will vary depending
on your current window definition. These tests are normally
implemented using the switch statement.
9 If all the windows have been closed jump back to your
main program, otherwise the first two steps should be
repeated.

T

idow Control

HE basic principles of controlling a Gem window are
best demonstrated with an example. Look at the
following window_controH} routine:

window_control()

{

/* Assumes that:

full = global integer variable.
message = global array of 8 integers.
Calls the functions redraw,
window_move, and window.full.
These need to be defined separately.

*/

fine Storage */
pen,whandle,option;
ntinue until window closed */

1;
t flag denoting the status
current Window */

0;
it until something interesting
ppens */

/* De

int o

/* Co

open=

/* Se

of

fuL L=

/* Wa

ha

do

{

evnt

opti
whan

swit

{

case

wind

brea

mesag(message);
on=message[0];
dle=message[1];
ch(opti on)

WM_T0PPED:

set(whandle,10,0,0,0,0);

k;

case WH.FULLED:

window_full(whandle);
redraw(whandle);
break;

case WH.SIZED:

case WHJIOVED:

window_move(whandle);
redraw(whandle);
break;

case WH.CL0SED:

open=0;
break;
}

}

while (open);
>

Note that this function is only intended as an illustration,
and should not be run in isolation. It includes calls to a

number of window management functions which we will be
looking at next.

r\

_

w

Manipulating windows

Redrawing a Gem window

I T is often necessary to redraw a Gem window's
contents from time to time. For instance, when it is

resized, moved, topped or overwritten its contents
may be corrupted. Here is a simple C function which allows
you to redraw a window's contents after it has been moved
or resized:

/* Redraw a window's contents

redraw(w)

/* w=current window handle. Expects
window coordinates to be stored

in the arrays wx,wy,ww,wh
int w;
(

int ew,eh;
v_hide_c(handle,0);
wclip(w); /* Clip window */
clearw(w); /* Clear window */
/* Draw circle */

vsf_color(handle,1);
ew = wxCw]+wwEw]/2;
eh = wy[w]+wh[w]/2;
v_ellipse(handle,ew,eh,ww[w]/2,

whCwl/2);
v_show_c(handle,0);
}

*/

*/

The function redraw(w) uses the wclip we developed
earlier to recreate the contents of the current window at its

new position.
Note that redrawfwj currently assumes that there is only a

single window on the screen. If we wish to use multiple
windows this function will have to be expanded con
siderably.

Fulling a window

y

NE of the common requirements of a window man
agement routine is the ability to enlarge a window to
fill the whole screen. This can be performed using the

procedure window_fu//fw/:

window_full(w)

/* Assumes that the window coords

are held in arrays wx,wy,ww,wh
w is the handle of the current

window.

full is a global variable
{

int xs,ys,ws,hs;

*/

if(full)

{

/* Do nothing */
full=0;
return;

}

else

(

/* Get working area of desktop */

wind_get(0,4,8xs,8ys,8ws,8hs);
/* Set fulled flag to 1 */

full=1;
/* Set new window size */

wind_set(w,5,xs,ys,ws,hs);
/* Get working area of new window */

wind_get(w,4,8wx[w],8wy[w],8ww[w],
SwhCw]);

}

}

"he first action of this procedure is to check whether the
idow is already full. If so, control is returned back to the

function which called it. Otherwise, the current window is
set to the maximum area available from the desktop using
the wind_set command. Ifyou intend to use window_fullfw)
within your own programs you will have to set the variable
full to zero before calling it.

Moving a window

W HEN we created the window_control function we

needed a way of moving and resizing a window on
the screen. The standard method of achieving this

effect requires the use of the AESfunction wind_set. This can
be seen in the following C procedure:

windowjove(w)

/* Expects window coordinates to be
stored in arrays wx,wy,ww,wh and
w is the handle of the current

window. The message array must
have been defined previously. It
is assumed to have been returned

by the evntjessag function */
int w;
{

/* Define coordinates */
int xs,ys,ws,hs; ,

/* Get new coordinates */
xs=message[4];ys=message[5];

/* Get new size */

ws=message[6];hs=message[7];
/* Check for minimum width */

if (ws<40) ws=40;
/* Check for minimum height */

if (hs<50) hs=50; .
/* Hove window */

wind_set(w,5,xs,ys,ws,hs);
/* Get new working coordinates */

wind_get(w,4,8wx[w],8wy[w],8ww[w],
SwhCw]);

}

The effect of window_move is to set the new dimensions

of the window with wind_get and then calculate the appro
priate working coordinates. See how we've checked for the
minimum width and height. This prevents you from selecting
a window which is too small to hold a reasonable amount of

information.

The function window_move was designed specifically for
use with the AESevnt_mesag routine. Ifyou want to control
a window independently of this function you will have to
change the lines which get the new dimensions of the
window. That is:

xs = message[4];
ys = messaged];
ws = message^];
hs = message[71;

The variables xs and ys should be loaded with the new
screen coordinates of the window and ws and hs with the

required dimensions.
If you're familiar with the Gem windowing system you

will have already encountered the vertical and horizontal
scroll bars used to control a window's contents. We'll now

discuss how we can use these features from one of our own

programs.

The first requirement is to incorporate the new attributes
into the existing window definition. This can be done by
changing the property list used in the original call to the
wind_create function. If, for instance, we wanted to install a
window at the centre of the screen, we could execute the

lines:

kind=NAHEICLOSEIHOVEISIZElVSLIDElHS

LIDE;
whandle = wind_create(kind,200,100,
100,50);

16

Manipulating windows

A public domain C compiler

I F you'd like to be able to follow this Gem pro
gramming section, but are unwilling to spend
more than £ 100 on a commercial C compiler, you

might be interested in a version of this language which
has recently appeared in the public domain. It is called
Sozobon C and can be bought for around £3.50 from
your local PD library.

Sozobon C appears to conform to the complete
Kernighan and Ritchie specification. It includes a full set
of Gem libraries and is easily capable of compiling all the
example programs which have been featured in this Gem
tutorial.

As you might expect from a PD program, there are a

Additionally, we would also have to add the amended
attribute list to any subsequent calls to wind_calc. Once we
have initialised the sliders we then need some way of
manipulating them from within the programs.

The AES includes a range of commands which allow us to
change either the size or the position of the two scroll bars.
These can be accessed through the wind_set and wind_get
functions. The formats of these commands are:

and:

r = wind_set(whandle,option,setting);
/* Set a slider */

r = wind_get(whandle,option,8setting);
/* Read a slider */

The option parameter holds the appropriate function
number and setting contains a value from 0 to 1,000. This
represents either the new or the current status of the slider,
depending on whether we have called the wind_set or the
wind_get command. As usual, r holds the result of the
function. If an error has occurred, a zero will be returned in
this position.

Here is a full list of the available commands:

Option 8: Sets/reads the current position of the horizontal
slider. This can range between 0 (far left) and 1,000 (far
right).

It is important to realise that the value is only relative to
the current window. So if its size is subsequently changed,
the physical appearance of the slider on the ST's screen will
be adjusted automatically.

Also, as the slider's precise dimensions will vary depen
ding on the size of the window there is no guarantee that
any individual movement will actually be reflected on the
ST's screen:

/* Hoves the slider to the

middle of the window */
wind_set(whandle,8,500);

Option 9: Sets/reads the position of the vertical slider. A
setting of 0 represents the top of the window and a value of
1,000 the,bottom:

/* Reads the current position of the

vertical siider ard places it in

the variabl e pos */
wind .get (whandle ,8,&pos);

Option IS: Sets/reads the size of a horizontal slider bar. This
can range in size from a small square (-1) to the maximum
width of the current window (1,000):

/* Sets si der to half the

avai labl i space */
wind..settwhardie, 8,500);

/* Reads slider into the

variable size */
wind..gettwhar die, 8,8size) /

couple minor limitations to the system.
Also note that the linker supplied occasionally

generates a harmless error message during compilation
of some windowing routines. Fortunately this error is
NOT fatal, and has no effect whatsoever on the resulting
programs.

Sozobon C is currently supplied on one double sided
720k disc, but as the package also works perfectly on an
unexpanded 520ST, it's well worth shopping around for
a copy on single sided discs.

Sozobon C is one of those rare programs which
deserves a place in everyone's library. So get hold of a
copy without delay - and C for yourself!

Option 16: Sets/reads the size of a vertical slider. The height
of the slider can be set to any value from -1 (very small) to
1,000 (the total extent of the current window).

Controlling sliders

HE AES windowing system allows the window
sliders to be moved with just a simple click of the
mouse pointer. This is controlled using the event

handler we encountered in the section on evnt_mesag.
We'll now examine the different messages which can be

generated by these sliders.

Message 25: WM_HSLIDE

This is produced when the horizontal slider bar in the
current window is manipulated. Once the change has been
detected the program should immediately update the pos
ition of the slider using a call to the wind_set function:

wind_set(whandle,8,pos);

Where pos holds the new position of the horizontal slider.
The return values are:

messaged]: Contains window handle
messageU]: New position of slider

Message 26: WM_VSLID

This is generated if the vertical slider is moved. As before,
the new slider position should be permanently set using the
appropriate option from wind_set. The return values are:

messageC3]: Contains window handle
messageM: New slider position

We could now incorporate the code to control these
sliders directly into the case statements used in our previous
gem_control function like:

case WHJiSLIDE:

xslide=event[4];
wind_set(w,8,xslide);
redraw(w);
break;

case WHJ/SLIDE:

yslide=event[41;
wind_set(w,9,yslide);
redraw(w);
break;

We would also have to modify the redraw function to
display the relevant sections of our windows, depending on
the values stored in the variables xs/ide and yslide.

^

r\

_

^

How to program in C

ALONG with 68000 machine code,

the programming language C is
probably the most important lan
guage to learn. The vast majority of
serious software - word processors,
text editors, spreadsheets, data
bases, utilities and so on - are writ

ten in C. Even the Gem operating
system is largely a C program.

So If you want to write this type
of software package, or even if you
simply fancy investigating the
latest fad in computer program
ming languages, then C is a must.

Histor

THE roots of C can be found in CPL -

Combined Programming Language -
created by the University Math
ematical Laboratory in Cambridge and
the University of London Computer
Unit.

However, the language was far too
bulky for most applications pro
grammers had in mind, so Martin
Richards at Cambridge developed a cut
down version called BCPL - Basic CPL

This was condensed even further by
Ken Thompson at Bell Laboratories in
New Jersey and he created B.

Dennis Ritchie, one of his colleagues
with whom he was working to create
a new operating system called Unix,
further developed B and it became the
language C. Unix was then almost
entirely rewritten in C, which is why it
is so closely associated with it.

C PROGRAMS are written using a text
editor which produces Ascii files. The
source code - the C program listing - is
then taken by a compiler and turned
into a machine code program which
can be run regardless of whether the
compiler is present or not.

The C language itself is very small,
and the vast majority of functions and
procedures found in other languages
are missing. They are provided separ
ately and are stored in files on disc
called libraries.

The compiler can be instructed to
include the contents of these libraries
in the program at compile time. A C
compiler is often judged by the size
and quality of the ready-made libraries
provided.

Creating a C program is a bit like
putting a jigsaw puzzle together - it's
made up of separate sections all stored
individually on disc. These are then
combined by the compiler to produce
the finished program.

Step by step

THERE are several stages involved in
writing an executable C program.
Fortunately the whole process can be
automated to a large extent, though
this may require some effort setting up
initially.

The separate stages are:

9 Write the program using a text
editor and save the source code in
Ascii form.

• Compile the program - a utility

Creating the C source code using a text editor

Compiling the source code to produce an assembly language listing

called a preprocessor first expands
the source code so it is readable by
the compiler which then translates
the listing into assembly language.

9 Convert the assembly language pro
gram into a relocatable object code
module using an assembler.

9 Link the oject code with the necess
ary code modules from the C
runtime library and translate it all
into an executable machine code

program.

This can take up to 10 minutes or
more for a large program running from
a floppy disc. If, after testing the pro
gram, it is found to have a bug the
whole process will have to be
repeated.

Which C Compiler?

A WIDE range of C compilers is avail
able for the ST, and they have an
equally vast price range starting at rock
bottom with a free public domain ver
sion and rising to full development sys
tems costing several hundred pounds.
So what is the difference between

them, and which is best?

The major differences are usually to
be found in the number of utilities and

library functions provided - useful
routines written by the software com
pany for you ready to slot into your
programs. There are also minor dif
ferences in the compiler itself, but these

How to program in C

are probably less pronounced.
GST C is a budget C compiler costing

as little as £15 at some retail outlets,

and was used to write some of the

programs in this section. It is supplied
on a single disc along with a slim
manual. Its major limitation is that it
can't handle floating point arithmetic.
However, it is surprising how rarely
this facility is needed.

Mark Williams C - used for the rest

of the listings - lies at the other end of
the price range and is supplied on four
discs packed full of ready made library
functions and utilities. A 700 page
manual is included too. It is expensive
however, costing almost £ 150.

The lack of library functions and
utilities in GST C isn't too serious a
problem as you can always write your
own, though it will require some time
and effort which could otherwise be

used to get on with developing your
program. The lack of floating point
maths is more serious: Imagine a
spreadsheet used to run a large busi
ness that ignored the pence and just
worked in poundsl

Makina a start

WE will start off C programming with a
very short, simple listing which just
prints a message on the screen:

/* Program I */

mainO
}

printf("This is a C progranAn");
printf("The printf function ");
printf ("prints on the screenW);

}

The first line of the program is a com
ment containing the program title. The
/* tells the C compiler to ignore all the
text following until it meets a */. It can
then carry on compiling. Comments
can be placed almost anywhere in the
listing.

Every C program is composed of
functions - they are easy to spot as
they are followed by a pair of paren
theses. There must be one called main//

Assembling the assembly language listing to
produce a relocatable object code module

| Desk File Cwipile Hssmble link List

• *T ;"BST 638BG Linker USl
KST 6S8BB Linker R132M39
HPlease type your comand line:
•m:\PR0E1.BIN -with bstc.lhk -holist
••Starting pass 1
•starting pass 2

•Li j|||ii:«: M»

Linking the object code with the relevant
code modules from the C runtime libraries

somewhere in the listing as this is
where the program starts executing
when it is run.

The chunk of code making up the
main/) function is contained within
braces, and in our listing is made up of
three printf functions. These are used
to display the message on the screen.

The text of the message is contained
within quotes and each printf is termi
nated with a semicolon - this symbol
separates all the statements and func
tions in C program listings.

Notice the \n at the end of the first
and last text strings. This moves the
cursor to the start of a new line on

screen, otherwise the program would
carry on printing the text on the same
line each time as it does with the

second and third strings.

Glitches

IT'S quite rare that programs work per
fectly first time, and there's often
something we misstyped or forgot to
include. These minor glitches will be
highlighted by the compiler during the
compilation process and an error mess
age will be reported.

The messages will usually tell you
what the error is and at what line it

occurred. Take them with a healthy
dose of salt though - they can be very
misleading. It may be helpful to
introduce a deliberate error into a C

listing, in Program I say, and see what
your compiler makes of it. The results
can be surprising.

Assuming you've entered Program I
correctly and compiled it, you may still
have problems running it. What is likely
to happen is that the program runs,
ends, and returns to the desktop so
quickly that you think it hasn't worked.

The solution is to pause after the
program has finished so you can see
the output on the screen. This is
achieved by adding the line:

getcharO;

to the end of the listing. This function
gets a character from the keyboard - it
waits for you to hit Return.

Some C compilers may also require
an additional line telling them that the
function getcharf) is defined in the
library STDIOH. The command:

#include <stdio.h>

tells the compiler to include all the
source code in the STDIO.H file when it

sets about its work.

The complete listing now becomes:

I* Program I */

ifinclude <stdio.h>

nainO

)
printf ("This is a C program\n");
printf ("The printf function ");
printf ("prints on the screenW');
getcharO;
>

^

^

The structure of a C program

SO far we've looked at the structure of a C program - it's
made up of functions - and seen how to print text on the
screen using printfl). The following short C listing should
hold no surprises, and its task is simply to print a short
message on the screen then wait for you to press the Return
key:

/* Return key test utili ty */

#incLude <stc io.h>

mainO
{

printf ("Hit
getcharO;

}

the Return key...");

The first line is a comment - a note to remind us what the
program does - and the next line tells the C compiler to
include some special code stored on disc in a library called
stdio.h. The main body of the program is to be found in the
main function and is enclosed by braces - an open one
marks the start and a close one marks the end.

The printfl) function displays the quoted string on the
screen, while the getcharl) waits for you to press the Return
key. These two functions are extremely powerful and we
have only tapped a small proportion of this power so far.
We'll see shortly that printffl can be used in many other
ways by simply varying the parameters passed to it in
brackets.

The variable nature of C

WE will move on now to slightly more complex aspects of
the C language and discover how it handles numbers, vari
ables and constants.

Although C is a fairly flexible language in many respects, it
quite often imposes strict rules which must be obeyed. One
of these is to insist that all variables, and their type, are
declared before use, normally at the start of a function.

There are several different types of variable, but the most
commonly used ones are char, int and float. The first denotes
a single Ascii character, the second indicates an integer and
the last is a floating point number. Other variables are
double, long, short, unsigned char, unsigned short,unsigned
int, unsigned long and pointer.

We'll restrict ourselves to integer variables for the moment
and see how to master these. They are defined in a C
program with lines like:

int length;
int width;
int area;

and once this is done we can assign a value to them and use
them in calculations like:

length = 8;
width = 5;
area = length * width;

As you can see, this short chunk of code calculates the

Variable orage size
type (blts|

char 8
double 64

float (or long float) 32

int (or short int) 16

long (or long int) 32

* (pointer) 32

short 16

unsigned char 8

unsigned short 16

unsigned int 16

unsigned long 32

The C variable types and storage size

area of a rectangle eight units long by five wide. Having
done this, how do we display the result? In fact, we use
printfl) yet again, but this time including extra parameters
and formatting information within the brackets like:

printf("Area = 7,6 ",area);

This time we are passing two parameters to printf,a string
enclosed by quotes followed by a variable - area. Any per
cent signs found within the string serve as markers showing
the compiler where to place any extra parameters following
it. In the line above the %d indicates a that a decimal number
is to be placed at this point, and it's the one following the
string - area.

We are now in a position to write a full C program
incorporating simple integer variables.

/* Introducing vari< bles */

#inc lude <stdio.h>

mainO

(

int length, width, area;

length = 8;
width = 5;
area = len gth * width;

printf ("Area = 7.6 ,area);

getcharO;
}

The screen picture overleaf shows how to convert tem
perature measured in degrees Fahrenheit to degrees Celsius.
It uses all the techniques we have discussed so far, but
introduces a slightly more complex calculation into the pro
gram. Thisshould't cause you any problems as you are quite
likely to have come across similar statements many times
before in Basic.

Repeating for a while

THIS Fahrenheit to Celsiusconversion utility isn't too useful
as it stands because it simplyconverts one fixed temperature
to Celsius - 98F - and it would be much better if it conver
ted all temperatures from freezing to boiling point. We can
do this using a while loop like:

/* Fahrenheit to Celsius converter */

#inc lude <stdio.h>

mainO

{

int f, c;

f = 32;
while (f <= 212) (

c = (f - 32) * 5 / 9;
printf (' 7.6 F = 7.6 C \n", f, 0;
f = f + 10;

}

getcharO,
}

The while statement causes a section of program to be
repeated while something is true. The section to be repeated
- consisting of three lines in our program - is enclosed
within braces and the statements within are indented
slightly to aid readability.

There can be any number of statements within the braces
and all will be repeated while the condition - the number,
variable or expression within the brackets following the
while - is true.

We repeatedly convert the temperature in degrees Fah
renheit to Celsius while r"is less than or equal to 212 - the
boiling point of water.

Notice that in the printfl)string there are two occurrences

The structure of a C program

The menu bar- -Jk—Text Harks Search Block Print Special Hode Help -The time

|L: IB Coi-_S P: is D:\PB0GBflH2.C =
/* Fahrenheit to Celsius conversion utility */

(include <stdio,h>

lain t)

int fahrenheit, celsius;
(

/* define variables used */ i

The C listing - -fahrenheit : 981
celsius : (fahrenheit - 32] * 5 / 9; /* calculate result */

printf("Xd Fahrenheit : U degrees Celsius", fahrenheit, celsius)!

getcharO I /* Hit Return to end progran */

»FI« »FJ« I »FB« 1>F4« I »F5«

IpffijffglNEjT PflGElmt LIHElLINE HH|W+HOED

Using Tempus to enter a C listing

of %d. Each one indicates where the corresponding decimal
integer variable following the string is to be placed.

We can significantly improve our Fahrenheit to Celsius
conversion utility with a number of changes. The major one
is to replace the while statement by a for. You may be
familiar with the Basic version, and ifyou are the C version is
likely to cause you a few headaches at first as it is so
different. It's probably best to forget any pre-conceived
ideas of how it works and treat is as an entirely different
statement.

Written in very general terms the for statement looks like:

for (exprl; expr2; expr3)
statement;

Taking the easy part first, statement can be a single C
statement terminated by a semicolon, or a block of state
ments enclosed within braces like the one used with while in
the temperature conversion utility.

The three expressions - exprl, expr2, and expr3 - can be
almost anything, so to illustrate the use of this new state
ment here is version two of our utility:

/* Fahrenheit to Celsius converter */

#inc lude <stdio.h>

mainO
(int f, c;

for (f=32; f<=212; f=f+10) {
c = (f - 32) * 5 / 9;

printf(" 7.6 F = 7.6 C \n", f, c);
>

getcharO;
}

Notice how similar to the previous listing it is, but it is
more compact. You can in fact usually convert a while to a
for quite easily.

As before, the statement - or list of statements in braces -
following the for is repeated. The first expression in the
brackets following the for sets up the start condition, the
second expression is the end condition and the final expres
sion is executed each time the statements are repeated.

There is another small improvement that we can make,
and you'll find this a common technique in C. The two
following statements are identical:

f = f +

f += 10;

When we want to add a value to a variable we can use

»rm »F7« »FS«

WORD RT SEflKH CLX L1HE

sThe function keys

this shorthand form to save typing. It also works with sub
traction, multiplication and division too:

a = a * 5;
a *= 5;

b = b / 25;
b /= 25;

c - 2;

= 2;

Print formatting

WHILE we are improving our listing we may as well tidy up
the output from this last program. Ifyou compile and run it
you should see something like:

As you can see the output is slightly skew whiff and
untidy. We can improve the appearance by telling the
printfl)function to pad out the numbers with spaces. We do
this by inserting a number - the field width - in the %dlike:

printf(" 7.16 F = 7.16 C \n", f, c);

The 3 following the per cent signs forces the numbers to
be printed in a space three characters wide. If the number is
less than three digits long it will be padded out with spaces.
The resulting output is:

32 F = 0 C 92 F = 33 C

42 F = 5 C 102 F = 38 C

52 F = 11 C 112 F = 44 C

62 F = 16 C

72 F = 22 C

82 F = 27 C

which, I think you'll agree, is much more pleasing to the eye.

_

_.

Function libraries in C

WE have seen that C is a language that is made up of
functions like main/), printfl), getcharf) and so on. Unlike
some languages, it is also possible to add more functions of
your own to those that C provides. In fact, without these
extra add-on functions - either provided ready-written by
the software company supplying the C compiler, or written
by yourself - the language would be pretty useless.

Most computer languages have a rich supply of useful
commands, statements, functions and procedures, but in
contrast C has very few, and the missing bits are defined as
functions which are provided in libraries. The most common
of these is the stdio.h library that we include into the compil
ation process at the start of every program.

Usually many more are available, and particularly common
are those for accessing Gem, which by the way, was written
in C itself, though there is some machine code too. You'll find
libraries like osbind.h, aesbind.h, vdibind.h, gemdefs.h and
linea.h included at the start of many Gem-based programs.
The manual supplied with the software will tell you what
functions they contain.

Defining your own functions

WHAT we'll do now is to see how to define our own

functions and look at their structure and properties. We'll
start off with a very simple example, and later move on to
something a little more complex.

The following C listing simply prints Hello on the screen,
but it does so by calling a function which is defined at the
end of the listing:

/* Defining functions 1 */

#incLude <stdio.h>

mainO

{

sayhelloO;
getcharO;

}

sayhelloO
{

printf ("Hello");
}

A library file of standard functions

The main part of the program is defined in the mainfl func
tion and is enclosed by braces as usual. The first thing it does
when the program is compiled and run is to execute the
function sayhe/io// which can be found at the end of the
listing.

This definition containsjust one function - printfl) which it
executes, and as there are no more it returns to the main/)
function and continues program execution there.

The second, and last, function in main/) - getcharf) - is
executed, which as you already know, waits for you to hit
the return key before continuing with the rest of the pro
gram. In fact, there aren't any more functions to execute, so
the program ends.

Passing parameters

THIS is a fairly trivial example which doesn't do anything
useful, so let's try something a bit more ambitious. The next
program prints the five times table on the screen:

/* Print 5 times tabl e */

#inc lude <stdio. h>

mainO

(

int number;
number = 5;
table(number);
getcharO;

}

table(n)

int n;
{

int i;
for (i=1; i<13 ; ++i)

printf (Id x 7.6 = %d\n",i ,n,i*n);
}

The first line of main/) defines an integer variable called
number and the following line sets its value to five - change
this if you want to display other tables. The third line calls
our function table//, passing it the parameter number, and

'A comment containing the program title

X File Edit Execute Hake OptiotrsT'Search Windows Info"
D:\TftBLES.i

Priflt 5 tines tableTf/

include <stdio,h>

ain()

int nunber;
nunber = 5;
able(nunber);
getcharO;

int i;
for (i=ij i<131;^Hl)

printf ("Xd tU =^d\n", i, n, i*n);

Calling a C function A C function called table The parameter passed to the function

6

Function libraries in C

the last line simply waits for a keypress again.
The function table/) takes one parameter, and its type

must be declared immediately after the function name. The
body of the definition is contained between the braces and
consists of a for loop to print out the five times table. The
printf/) function we've seen before, but never with this many
parameters.

Each %d in the string to be printed is replaced by the
corresponding parameter following it - the first by i, the
second by n and, finally, the third by the result of the
calculation ; x n.

Returning a result

SO far we have seen how to define a function at the end of a

listing, and how to call it from the main body of the program.
Parameter passing has been covered, so we'll now move on
to see how a result can be returned from a function.

To demonstrate this we'll return to familiar ground with
the Fahrenheit to Celsius conversion program, but this time a
separate function will be defined to calculate the new tem
perature:

/* Fahrenheit to Ce Isius conversion */

#inc lude <stdio.h>

mainO

(

int f;
f = 212;
c = convert(f);
printf("%d F = 7.6 C\n", f, c);
getcharO;

}

convert(n)

int n;
{

int temp;
temp = (n - 32) * 5 / 9;
return(temp);

}

The function convert// is defined at the end of the listing as
usual, and as before a parameter is passed which is defined
as being integer. The body of the function consists of a
variable definition followed by the calculation of the Celsius
temperature. The final line is an instruction for the function
to return the value temp, and this is used to set the value of c
in main/).

It is important to note that only one value can be returned
from a C function, and that the function exits when a return/)
statement is found. There can also be more than one return/)
too, as we'll see in our next program:

/* Returning values from functions */

#include <stdio.h>

mainO

{

printf (ld\n",test(D);
printf ("%d\n ,test(2));

>

testO

int n;
(

if (n == 1)

return(50);
if (n == 2)

return(100);
}

This short program prints two numbers - 50 and 100 - by
calling the function test/) first with the value one, then with
two. An //statement tests the value of the parameter n and
returns the appropriate value.

As you can see from the listing, the structure of the if
statement isn't at all like Basic so take care.

The syntax is:

if (expression) statement

if (expression)
statement

else

statement2

The expression can be almost anything which returns
either true [non-zero) or false (zero), and the one we used
was the test for equality using the double equals sign. Note
that Basic uses a single equals sign with IF ... THEN and if
you use this in C your programs won't work.

As there are only two possible values of the parameter n,
the function message/) could have alternatively been written
like:

testO
int n;
{

if (n == 1)

return(50);
else

return(100);
>

Local variables

WE have yet to discuss one more important aspect of func
tions, and that is variables. It must be remembered that all
variables within a function are local - that is, even though
the same variable name may appear in more than one func
tion, the C compiler regards them as being completely dif
ferent.

So if you had a variable called number which had the
value five in main//, it could have a completely different value
within another function.

For instance:

/* Local variables */

#include <stdio.h>

mainO

{

int number;
number = 5;
printf ("number = %6\ri ,number);
test(number);
printf ("number = %d\n ,number);
getcharO;

}

test(number)

int number;
{

number=number+1;
printf ("number = %d\n ,number);

>

Run this to convince yourself that the number in main/) is
completely different to that in the function test/).

Its value is correctly printed as five both before and after
the function call, yet inside the function the value of the
(different but identically named) variable number is six.

To reinforce what we have learnt about functions, try to
write one that prints the correct day when passed a number
in the range 1 to 7.

_

_

Reading the keyboard

I/O functions

IT is about time we looked in more detail at how to get
information into and out of C programs - input and output
functions, or I/O for short. We have used a couple of func
tions already - printf/) and getchar/).

We implemented the latter function as a pause by tagging
it on to the end of our listings. It reads a single character
from the keyboard, but works in a peculiar way. When you
call getcharfj you can type away until you hit Return, then,
and only then, the first character is read.

The rest of them, up to and including the carriage return
character itself, are stored in a buffer somewhere in memory
and are read by subsequent calls to getchar/).

To read a character you would use a line like:

int c;

c = getcharO;

where the variable c is an integer. Don't be tempted to make
it a character variable because you're reading a character, as
the value might not always lie in the 0 to 255 char range.

So far we have used the function printf/) to display charac
ters, strings of text and numbers on the screen. This is in fact
a very complex function to use, and a simpler, more primitive
one is also available called putcharf). It takes just one par
ameter, an integer, which it outputs as an Ascii code.

We can use putcharf) to output single codes and charac
ters that printf/) isn't suitable for. Suppose we want to clear
the screen by sending the codes Escape E to the VT52
emulator, we could use two putcharj) function calls like:

putcha r(27);
putchar('E');

Let's see these input and output functions in use. The
listing below clears the screen using two putchar/) functions
calls, prints a prompt on the screen and then allows you to
enter your name by successively reading characters from the
keyboard by calling getcharf/:

I* Get input from keyboard */

#i nc lude <stdio.h>

mainO

{

int c;

/* Clear the screen */
putchar(27);
putchar('E');

/* Print the prompt */
printf ("Enter your name:");

/* Read the keyboard */
c = 0;
while (c != '\n')

c = getcharO;

AS it stands, this demonstration isn't a great deal of use, as it
won't store the input - each character read is simply discar
ded straightaway. We need to store the input so it can be
recalled and manipulated later on.

In order to do this, C enables us to reserve space in
memory by creating a character array. In some ways the
process is similar to dimensioning an array in Basic. First we
have to decide how much space we're going to need - in
other words, how many characters is the user of the pro
gram likely to input? To be on the safe side we could allow
for a 50 character name with:

char string[50];

The keyboard input routine used in the last listing could

be expanded to store the characters in the array string:

c = u;

i = 0;
while (c != '\n') {

c = getcharO;
stringti] = c;
i = i + V;

}

However, this is isn't good C programming style, and
several shortcuts are normally taken. Everything in C has a
value, and that value is the result of the last operation
performed. So, the value of:

getcharO;

is the value of the character read from the keyboard. This
means we can compact the while routine to give:

whi le ((c=getchar()) != '\n')

Another common shortcut is to pre-increment and post
decrement variables. For instance, the following two lines
mean exactly the same thing:

i = i + 1;
i+ +;

Combining all these shortcuts, and incorporating the
whole lot in our first listing we end up with:

/* Get input from keyboard V2 */

#i nc lude <stdio.h>

mainO

{

char string[50];
int c, i;
putchar(27);
putchar('E');
printf ("Enter your name:" 'f

i = 0;
whi le ((c =getchar 0) != '\n') {

string[i++] = c;
}

stringli] = '\0';
printf("\nYour name is:%s ,string);
getcharO;

}

Input functions

ITis also common C practice to split up programs into small
sections or functions, each performing a simple, but specific
task. We can do this with our example program by taking
out the input routine and making it into a general function
that can be included in any program where we wish to read
the keyboard.

The main body of the code remains the same, with a while
loop structure reading the keyboard and storing the charac
ters in a char array. However, as we saw earlier, functions
have their own private (local) variables and normally can't
access those defined elsewhere in the program.

This means that we have to pass the character arraystring
as a parameter. In fact, this is an advantage as it makes the
function quite general and it will work with any program:

input(s)
char s[];
{

int c, i;
i = 0;
whi le ((c =getchart)) != '\n')

sli++] = c;
s[i] = '\0';

>

8

Reading the keyboard

It would be called with a chunk of code like:

char string[50];
i nput(string);

and the text input would be stored in the string array. An
alternative way of writing this would be to use a for struc
ture, and some programmers prefer this as it is shorter, albeit
only one line:

input(s)
char s[];
{

int c, i;
for (i=0; (c =getcharO) !='\n', ++i)

sti] = c;
sti] = '\V;

}

This can be compacted even further, and it is quite
tempting to do so, but C programs are difficult enough to
read and debug as it is without adding to the problem by
squeezing as much code into as small a space as possible.

Limiting input

THE one problem with the routines we have looked at so far
is that they don't check that the string will fit into the space
allocated. We have allowed for a string of 50 characters, but
suppose a novice accidentally holds a key down and then
hits Return afterwards, inputting 60 or 70 characters. What
will happen?

In this case the program is quite likely to crash, and
possibly the STwill bomb out. Only pressing the reset button
or switching off will enable you to regain control of your
micro. C gives you a great deal of power and flexibility, but
this means you have to be especially careful that your pro
grams behave themselves and are bug-free.

What we have to do is somehow restrict the number of

characters input so the limit of the character array isn't

STRING variables are handled by C in a completely differ
ent way to other languages like Basic, and none of the
standard string manipulation functions is present in the
language - you have to write your own. However, it
isn't too difficult, and the code is usually quite short and
compact.

A string is stored in memory as a string of characters
terminated by a zero, or to be more precise,' \0'. Youcan
initialise a string constant with the following declaration:

static char msg[] = "Hello there.

The compiler will automatically place a zero at the end of
the string, so its length is actually one more than the
number of characters. You can also assign a string to a
pointer, as we'll see when we discuss this complex topic.

An alternative method of incorporating a string into
your program is to allocate space by defining a character
array, and then to assign the string to that array like:

char sC50];
int i;
for (i=0; (s[i]=getchar) !='\n'; ++i);
sti] = '\0';

Note that a zero is appended to the end of the input
string. Also note that "A" and A' are two completely
different things in C. The former is a one character string
terminated by a zero, and the latter represents the Ascii
code for the letter A - an integer.

exceeded. This isn't a difficult task and involvesjust one extra
check:

input(s,m)
char st];
int m;
{

int c, i;
i=0;
whi le ((c=getcharO) ='\n' 88 i<m-1)

sCi++] = c;
sCi] = '\0';

}

Here an extra parameter m is passed to the input/) func
tion, and this tells it the maximum number of characters that
it can place into the array s. In fact, we only store m-\
characters, as space needs to be left for the zero character
terminating the string. If' \ 0' is omitted from the end of the
string your program is quite likely to crash, or at the very
least, display garbage.

STRING variables - or to be more precise, character
arrays - are extremely useful structures in C program
ming. So as you might expect, functions are available for
manipulating them. However, they aren't built in to the
language, but are supplied as pre-defined library routines
ready to be incorporated into your programs.

We could easily make use of these, but as many are
quite simple and involve very little code it is good prac
tice to have a go at writing them yourself. For instance,
how long is a string? They can in fact, be any length, but
frequently programs need to know exactly how many
characters they contain. We'll write a short function to
do this.

As we've seen, a string is always terminated by a zero
character - or \ 0, which the compiler interprets as zero.
So to find the length we simply start at the beginning
and count the characters until we come to this zero

end-of-string marker. It can be implemented like:

how_long(s)

char s[];
(

int i;
i = 0;
while (sC] ='\0')

++i;
returnd);

}

The character array containing the string is passed as
the parameter s. A counter, /', is set to zero and a while
loop structure increments the counter while the array
item is not equal to zero.

Another function we may require is one that reverses a
string. We can write a function backwards/) that reverses
any character array passed to it. The function will need to
know the length, and this can either be passed as a
parameter or found using how-long/):

backward(s,l
char s[];

•n)

int len;
(

int *i,j;
char temp;
i = 0;
j = len-1;
whi le (i<

temp = s

s[i++] =

i)
en,
sC

{

];
s[j--] =

}

>

ten p;

r\

_

^

Case conversion

WE will continue to explore character arrays - often used for
storing strings - and write some useful functions to manipu
late them in various ways. Although many of the routines
we'll look at are available as ready made library functions, it
is usually a trivial task, and good practice too, to write your
own versions.

One of the things we often wish to do with a chunk of
text stored in a character array is to check that it contains
either all upper case letters or just lower case ones, and
convert those that aren't to the correct case. A function to

do this would have to examine each character and test it to

see if it was in the range A to Z for upper case and a to z for
lower case.

The following program demonstrates how to input a line
of text from the keyboard and convert any upper case letters
to lower case. It is written using GST C, but contains nothing
unusual, so should be able to be compiled by most C
packages:

/* Convert input to upper case */
/* Written in GST C */

#i nc Lude <stdio.h>
#define HAXLEN 100

mainO

{

char string[MAXLEN];
inpuHstring,MAXLEN);
lower(string);
printf ("\nXs", string);
getcharO;

}

input(s,m)
char stl;
int m;
{

int c,i;
for (i=0;(c=getchar()) !='\n'

s[i++] = c;
s[i] = '\0';
}

lower(s)

char s[];
{

int i;

for (i=0; s[i]!='\0'; ++i)
if (sCi:>='A' 88 sti]<=7')

sti] += 32;

i<m-1;)

Enter it, compile it and run it to see it in action. Try typing
a mixture of upper and lower case letters and see that it
converts them all to lower. You've seen input routines
before, so input/string) should hold no surprises. It reads the
input and places the characters in the character array string
which is passed as the parameter 5.

The function we are interested in is the one at the end

called lower/) as it is this that does the actual conversion. A
for loop structure is used to scan through the array character
by character. An //statement tests the current character to
see if it is upper case, and if it is, 32 is added to the Ascii code
- the increment needed to make an upper case letter lower
case.

The line:

for (i=0; s[i]!='\0'; ++i)

sets up the loop, and initialises the loop counter / to zero.
The end of the string is tested for by the middle conditional
statement, which checks that the character is not equal to
the zero end-of-string marker. The final statement in the
brackets increments the loop variable /.

The following if condition tests if the character is greater
than or equal to A and less than or equal to Z (the double

ampersand sign is C's equivalent to Basic's logical AND
operator). In other words, it asks whether the character is a
capital letter:

if (s[i]>='A' s[i]<=T)

The final line of this function, which is executed if the if

condition evaluates to true, is an interesting feature of the C
programming language, and at first sight it appears to be
very strange indeed.

s[i] += 32;

What this does is to add 32 to the array element s[i] and the
line is exactly equivalent to the alternative, and more tradi
tional way of writing the expression:

sli] = sli] + 32;

The only difference is that the latter version takes slightly
longer to type. The accompanying panel shows some similar
C shortcuts and abbreviations along with their full expanded
versions.

Abbreviation Meaning

x = y x = y

x + = y x = x + y
x-=y x = x - y

x *= y x = x * y
x /= y x = x /y
x %= y x = x % y
x >>= y x = x >> y

x «= y x = x << y
x &= y x = x &y
x =y x = x " y
x I = y x = x l y

Common abreviations and their meaning

One final point to note with this listing is the #define at
the start. This tells the compiler to replace every occurrence
of MAXLEN with the number 100. If at any time we want to
change the maximum length of input, we simply alter the
100 following MAXLEN.

The advantage of this is that we don't have to search
through the program listing changing all the maximum
lengths, which would be the case if we had used the actual
number 100 in the program.

Numeric input

WE will move on to see how to input numbers into our C
programs rather than character strings. In fact, the technique
involved uses a large chunk of code from our last program.

h File Edit Execute Hake

/* Convert input to upper ca<
/» Hritten in GST C

limclude (stdio.h)
adefine HnXLEN 198

naint]
{

char strinsfflAXLEMl
input!string,HhXLEH);
lowertstringl;
printfC"\nKs", string);
getcharO!

)

input(s,nl

Search Windows Info

aosize...

Autoindent
flutosa'je.,.
Visible tabs
Ignore case

J Ho Undo

WEI!
EnuinvirofiHent I
External Debugger

Cache HanageNent.,,
Flush Resident Progs,

Save Configuration,,
Read Configuration.,

Laser C although very expensive, can reduce compile-link-
run times from minutes to seconds

10

Case conversion

What we have to do is to input the number into a character
array as a string of Ascii characters. We can then scan the
array and calculate the number from the Ascii codes of the
digits stored there.

The program here allows you to input a decimal number,
which it then prints out in hexadecimal using the %xconver
sion specification in the function printf/):

I* Convert decimal to hexadecimal */

/* Written in GST C */

#i nc lude <stdio.h>

#define HAXLEN 10

mainO

{

char stringtHAXLEN];
int number;
i nput(string, HAXLEN);
number = val(string);
printf("\nHex = 7,y. ",number);
getcharO;

}

input(s,m)
char 5CI;
int m;
(

int c,i;
for (i=0;(c=getchar()) !='\n'

sCi++] = c;

sti]
}

\0';

val(s)
char s[];
(

int i ,n;
n = 0;
for (i=0; sti]!='\0'; ++i)

n = 10*n+(sti]-'0');
return(n);

}

i<m-1;)

The input routine we've seen before so I'll say no more
about this. The part we are interested in is the function
called valf) at the end of the listing, as it is this which scans
the string of digits and converts it into a number.

The way it works is to initially set the number n to zero.
Then a for loop scans the string from start to finish - remem
ber the end of the string is marked by a zero character. The
number n is multiplied by 10 and the next digit - calculated
by subtracting Ascii zero from the Ascii code of the character
- is added to the result. This process is repeated until there
are no more characters. Finally n is returned as a result of
the function with returnfn).

Operator Function

+ Addition

_ Subtraction
* Multiplication
/ Division

% Remainder after division

< Less than

> Greater than

< = Less than or equal to
> = Greater than or equal to
= = Equal to
!= Not equal to

1 Logical NOT
&& Logical AND
1 1 Logical OR
& Bitwise AND

1 Bitwise OR

\ " T Bitwise XOR

>> Shift bits right
<< Shift bits left

Ones complement

C operators

Countina u

STILL staying with strings, but this time returning to pure text
rather than numeric input, we'll look at a new function to
count the number of words in a line of input - the basis of a
simple word counter for word processors.

We can use the same input routine as in our previous
examples, and once we've got the text stored in a character
array we can scan it and count the number of words quite
easily.

All words start with a letter, so what we do is start at the

beginning of the array and examine each character. When
we find either an upper or lower case letter then that is the
start of the first word.

We now have to skip the rest of the characters in the
word and look for its end, marked by either a space or the
end of the input string - a zero marker. If a space is found,
we look for the start of the next word, and so on until we

come to the end of the input string.
Here is the whole listing:

/* Word counter */

/* Written in GST C */

#inc lude <stdio.h>
#define HAXLEN 100

nainO

char stringCHAXLEN];
int words;
printf ("Enter some text:
inputtstring,HAXLEN);
words = count(string);
printf("\nThere are 7,6 words",words)
getcharO;

{

}

");

input(s,m)
char sC];
int m;
{

int c,i;
for (i =0; (c=getchar())! ='\n' 88 i<m-1;)

sti+ +] = c;
sti] = '\0';
}

count(s)

char s[];
{

int i,words;
words = i = 0;
white (sCi: I ='\0')

if ((s[i]>=T 88 sti]<=7') II
(sti]>='a' 88 sCi]<='z'))

(

++words;
while (sti]!=32 88 sCi]!=0)

++i;
}

else

++i;
return(words);

}

The important function is count/) at the end of the listing.
After declaring the variables, both words and / are set to
zero. Then a while loop structure contains the main body of
the code.

The // statement tests whether the character is greater
than or equal to A and less than or equal to Z - in other
words a capital letter - or greater than or equal to a and less
than or equal to z - a lower case letter. If it is, words is
incremented and a while loop skips the characters in the
word, looking either for a space - Ascii 32 - or a zero - end
of string marker.

If the if test fails and the character is not a letter, the

pointer / is incremented so that s[i] points to the next cha
racter in the string.

r\

r>

w

~

Floating point variables

WE have looked at several different variable types
commonly used in C programming, but two we haven't
really explored in any depth are floating point variables and
numbers. High level languages like Basic handle them just
like ordinary integers and you can usually manipulate
floating point variables and numbers without changing your
program significantly.

Many Basics like ST Basic distinguish integers from floats -
sometimes called real numbers - by appending a per cent
sign to the variable name. So num% would be an integer or
whole number but num would be a float or real number.

STOS Basic is unusual in that it assumes you are using
integers and you must append a hash sign to indicate a real
number.

Unlike Basic, in C programming we don't use a per cent or
hash sign, but we do have to tell the compiler which vari
ables in our program are integer and which are floating
point. This is done by defining the variables at the start of
main/) or in whatever function they are used like:

float height;
double length, width;

The first example defines the variable height as being a
floating point number. The second example defines length
and width as being double precision floats - meaning you
can have more digits after the decimal point, hence a greater
degree of accuracy.

To demonstrate the use of this new type of variable here is
a short program which prints out the numbers up to 10
along with their square roots:

/* Floating point output */
/* Hark Williams C */

#i nc lude <stdio.h>

#i nc Lude <math.h>

mainO

{

float n,r;

printf ("Number RootW);
for (n=1; n<11; n+=1) {

r = sqrt(n);
printf ("Xf = n\n",n,r);

}

Numeric output

SO far we have looked at ways of inputting numbers into
our C programs, and this has involved entering a string
and then converting the Ascii characters into a number.
Although we have also seen how to output numbers
using the printf/)function, it is good practise to have a go
at writing your own output routine.

One method involves the reverse process - converting
the number into a string and then printing this character
by character:

printd(n)
int n;
{

char strirgt10];
int i;
i = 0;
while (n > 0) {

stringt
n /= 10,

}

++] = (n % 10) + '0';

while (i >= 0)

putchar
}

stringCi •]);

This is written using Mark Williams C, an expensive but
comprehensive C development system. In past example list
ings the budget-priced GST C was used, and while this is
excellent for most tasks its one main drawback is that it can't

handle floating point arithmetic. Decimal numbers are out
and you are restricted to whole numbers - which, in prac
tice, is rarely a handicap.

Some compilers, Mark Williams for instance, require that
you specifically tell it to include its floating point routines
into the final code. Ifyou forget to do so when compiling the
source code confusing error messages may be displayed, as it
assumes you are using integer maths throughout.

The compiler command line for Mark Williams is:

cc -f programl.c -lit

The -f tells the compiler to include the floating point
printf/) function instead of the standard one. The reason it is
not normally included is that it requires extra code, thus
making the program slightly bigger. The -Im at the end tells
the linker to link in the maths library as we call a built-in
function called sqrt/) to calculate the square root.

In addition to this, the maths library must be included in
the compilation process with an include command at the
start of the listing.

A further point worth noting is that some C compilers
insist that you include a decimal point when assigning a
value to a floating point variable like:

5.0 * 6.0

and not:

n = 5 * 6

You'll notice from the listing (and the output if you enter
and run this program) that the variable n runs from 1 to 10 in
steps of one, and only whole numbers are used. You might
think that n could therefore be defined as being an integer,
but ifyou try it all the square roots come out as being zero.
What has happened is that the function sqrt/) expects a float
to be passed to it as a parameter and you provide it with an
integer. It gets confused and assumes it's a float with a value
of zero.

Finally, take a look at the printf/) function. You'll see that it
includes the %f conversion specification. This instructs the
print routine to place a floating point number at this point in
the string being output.

We can add a couple of parameters to this - placed
between the per cent and the f- to tell it how many decimal
places to print and how much space it has got. For instance,

This function can be called with something like
printdf 12345) and it will print the number on the screen.
It works by successively dividing the number by 10 and
storing the digits in a character array. When the number
reaches zero the string is complete, but unfortunately the
digits are in reverse order. A while loop is used to output
the characters and putcharf) directs them to the screen.

You might think that this is a fairly compact and
efficient routine, but in fact, it can be made much simpler
and shorter by implementing it as a recursive function:

printd(n)
int n;
{

if (n > 9)

printdt n/10);
putchar((n 7. 10) +'0');

>

This new version orprintdf) is only possible because of
the way C implements local variables each time a func
tion is called. If the number passed to printdf) is greater
than nine it repeatedly calls itself and divides the number
by 10 until it gets a number small enough to print.

11

12

Floating point variables

%5.2f would mean print the floating point number in a space
five characters wide - padding out with spaces if it's smaller
- with just two digits after the decimal point.

For a much neater output alter the printff) function so that
it reads:

printf (" %2.0f U.2f \n",n,r);

The maths library header MATH.H is a simple C listing that
defines a few constants and informs the compiler that certain
maths functions will be used. The only task it performs in our
program is to tell the compiler that the function sqrt returns
a double precision floating point number.

By default, all functions return integer results so a double
sqrt f) at the start of the listing must be entered.

Inputting floats

WE have examined several input routines for entering strings
and integer values, and now it is time we saw how to enter
decimal numbers into floating point variables. What we'll do
is to input the number as a simple string, and once it is safely
stored in memory we'll convert it into a number. We've seen
the string input routine before, so let's not dwell on that.
Here is the function which converts that string into a real
number:

double getfloat(s)
char sC];
{

int i;
double n,fact;
n = 0.0;
for (i=0; sti]!='. ; ++i)
n = n*10.0 + (st]-'0');

fact=0.1;
++i;
while (sti]!='\0') (

n = n + fact*(st ++]-'0');
fact = fact/10.0

}

return(n);
}

The function is called getfloatf) and the string is passed as
a parameter. The function returns a floating point number so
it must be defined as being either a float or - as in this case -
a double (float). Ifyou don't do this the compiler will assume

gister variables

THERE is a special type of variable available to C pro
grammers called a register variable. Normally variables
are allocated space in memory to hold their name and
value, the amount of space depending of the length of
name and type of variable, such as integer, float or string.

However, register types are completely different in
that they make use of the 68000 processor's internal
registers to hold the variable's value. This imposes certain
restrictions on its type, but the advantage is that they
can be accessed at lightning speed.

The only data type available in register form is integer,
as the 68000 chip's registers can't manipulate floating
point numbers. Also only a limited number of registers is
available so this too, places a limit on the number you
can define in your program. It is best to reserve them for
speed sensitive parts of your code and to restrict them to
very heavily used integer variables.

To convert an ordinary integer to the register type
simply precede its definition with register. To demon
strate their use the following short program takes 20.93
seconds to execute:

the result returned by the function is an integer and you'll
end up with a nonsense value for the input.

The function is in two parts. The first half works out the
value of the whole number part of the input and the second
half calculates and adds the decimal digits. Here is the
routine incorporated into a simple program:

/* Floating point input */
/* Written in Hark Williams C */

#i nc lude <stdio.h>

mainO

{

char string[203;
double number , getfloatO;
input(string);
number = getf loat(string);
printf ("Number = /if \n", number);

}

input(s)
char st];
{

int i,c;
for (i=0; (c =getcharO) !='\n';)

sti++] = c;
sti] = '\0';

}

double getfloat(s)
char st];
{

int i;
double n,fact;
n = 0.0;
for (i=0; sti]!=V; ++i)
n = n*10.0 + (sti]-'0');

fact=0.1;
++i;
while (sd']!='\0') {
n = n + fact*(sti++]-'0');
fact = fact/10.0;

}

return(n);
}

What this doesn't allow for is negative numbers, so you
might like to modify the function to cope with this situation.
All you need to do is examine the first character and set a
flag if it is a minus sign. If one is found return -n instead of n.

/* Speed test */

#include <stdio.h>

mainO

{

int i , j;
for (i=0; i<20; ++i)

for (j=0; j<30000; ++j) ;
}

If, however, we insert the register command before
the int like:

register int i , j;

execution time is reduced to 13.23 seconds - around

two thirds of the original time and quite a significant
saving.

--

w

_

Peeking and poking

New variables

ONE important topic we have yet to cover in this section on
C programming is pointers. It can be a confusing subject for
newcomers as it introduces ideas which may be quite for
eign, but in fact, it is fairly straightforward once you get the
hang of it.

Although there are significant differences, there are also
several similarities to Basic's PEEK and POKE, as we'll see.

Wherever possible we'll show the Basic equivalent to the C
code.

Pointers are a different type of variable. They aren't at all
like the character, integer or floating point variety we've
seen so far. Pointers, as their name suggests, are variables
that point to items or objects stored in the computer's
memory.

They, in fact, hold their address. These objects may be
other variables, strings or arrays. Suppose x is an integer
variable and its value is five. This can be defined like:

int x;
x = 5;

If ptrx is a pointer (and without going into detail about
how it was created) then using the ampersand operator we
can set it to point to the address at which the value of x is
stored with the line:

ptrx = 8x;

The quivalent statement in Basic would be:

ptrx = VARPTR(x)

Now that ptrx is pointing to *'s address what can we do
with it? Well, x's value can be accessed in a similar manner to
the way in which Basic's PEEK and POKE operate. The
following line setsy equal to the value of x- in this case, five:

y = *ptrx;

The asterisk indicates that you are accessing the contents
of the item pointed to by ptrx and it vaguely resembles
Basic's:

y = PEEK(ptrx)

where ptrx is an address. The value of x can also be modified
using a similar process:

*ptrx = 6;

Notice that the pointer is now on the left hand side of the
assignment statement and this means that the contents of
the item pointed to by it is equal to whatever is on the right
hand side - in this case, the integer value 6. This is like the
Basic statement:

POKE ptrx,6

As a further example, listing I demonstrates the use of
pointers by using them to swap the values of two variables.
Notice that the two pointers are defined in line two of main
as being integers (meaning the objects they point to are
integers).

At first sight the third statement from the end is a strange
one. It sets the contents of the integer pointed to by ptrx to
the value stored at ptry.
In Basic this would look like:.

POKE ptrx,PEEK(ptry)

It must be stressed that the Basic equivalents are similar
but by no means identical. C takes into account the object
the pointer is pointing at and adjusts its operation accord
ingly. Integers, floating point variables and character arrays
all take up different amounts of space in the memory. C will

automatically alter the number of bytes read or written to in
pointer operations.

/* Swap variables */
/* Prospero C */

#include <stdio.h>

mainO

{

}

int x , y , temp;
int *ptrx , *ptry;
x = 3;

y = *;
printfC'x = %i , y = M\n",x,y);
ptrx - 8x;
ptry = 8y;
temp = x;

*ptrx = *pt ry;
*ptry = temp;
printfC'x = Xd , y - 7.d\n",x,y);

Listing I

Character pointers

THIS isn't the limit of the use of pointers, and we have only
just scratched the surface. Pointers can aim at any object, so
they can just as easily point to a string, which is in fact,
essentially an array of characters. So the following state
ments are quite valid:

char *string
string = "Some text..."

In this case the pointer string points to - or in other
words, holds the address of - the start of the string. Now the
pointer is defined as being a char. This type of assignment is
identical to the variety we've seen before when defining
string variables. The following two statements are the same
in C:

char stringCD
char *string

"Hello...";
"Hello...";

In order to be able to perform simple arithmetic operations
on pointers C must be told what types of object they are
pointing to. For instance, if the pointer ptr points to the
string "ABC" it will hold the address of the first character -
the start of the string. If the pointer is incremented with
+ +ptr it will point to the second character. If it is incre
mented again it will then point to the third and so on.

The following program defines the pointer ptr and sets it
to point to the string "ABC". The three characters of the
string are altered one by one so that the string becomes
"XYZ":

/* Character Poi nters */

/* Prospero C */

#include <stdio h>

sainO

{

char *ptr;
ptr = "ABC";
printf ("Xs\n ,ptr)
*ptr = 'X';
ptr++;

*ptr = T;
ptr++;

*ptr = 7';
ptr-;
ptr--;

printf("%s\n ,ptr)
}

In this case incrementing the pointer makes it point to the

14

Peeking and poking

next character in the string, which is essentially an array of
characters. If the pointer was an integer type pointing to an
array of integers it would be incremented by whatever
amount is necessary so that it points to the next integer.

String functions

THE following short C program demonstrates how to
compare two strings to see if they are the same. The code'
does not use pointers:

/* Copy strings */
/* Prospero C */

#include <stdio.h>

maint)

{

char astringC] = "Hello...";
char bstringL"] = "Goodbye!";
int test;
test = compare(astring,bstring);
if (test)

printf("\nEqua IVn");
else

printf ("Not equal");
}

compare(a,b)
char aC], b[];
{

int i;
i = 0;
while, (ati] == bti])

if (aCi++] == 0)
returnd);

return(0);

The function compare// at the end of the listing is the one
that does the comparing and it returns a value of 1 if the
strings are the same, otherwise zero is returned.

The strings are passed as character arrays using code that
we've seen several times before so there's nothing unusual
here.

The function can be rewritten using pointers:

compare a,b)
char *a *b;
{

whi e (*a++ == *b++)

if (*a==0 88 *b==0)
returnd);

return(0);
}

We have seen the post increment function before, but
here it is worth noting that the increment in *a++ refers to
incrementing the pointer and not the contents of the object
pointed to. As you can see, this version of compare is slightly
more compact and is just as readable.

In a similar fashion we can also copy strings using either
character arrays or pointers. As before, the pointer version is
more concise.

Here is the standard non-pointer version:

copy(a,b)
char a[],b[];
{

int i;
i = 0;
while (ati] != 0 {

bCi] = alii;
++i;

}

}

And the pointer version looks like this:

copy(a,b)
char *a,*b;
{

while ((*b = *a) != 0 {

a++;

b++;
}

}

While this may seem like an improvement it can be
shortened. The post-increment instruction can be added to
the pointers in the while test:

copy(a,b)
char *a,*b;

}

while £ (*b++ = *a++)) ;

This shows just how compact C listings can become. There
is a temptation to produce extremely compact, and conse
quently, almost totally unreadable code.

Stringing along

POINTERS can be'employed for quite a wide variety of
functions, so as a further example of their use we'll write a
simple function to return the length of a string.

A string is a character array and the function written as
normal without using pointers would look like:

getlen(s)
char st"];
{

int i;
i = 0;
while (sfi] != '\0')

i++;
return(i);

}

The counter /' is set to zero and each character is examined

to see if it is the end of string marker - zero. When it is found
the length is returned. You would call the function with a
line like:

length = get len(string);

There's nothing wrong with this function, but as with any
programming task there is always an alternative way of
performing the same operation. If we rewrite this making
use of pointers our first attempt might look something like:

getlen(s)
char *s;
{

char *p;

P = s;

while (*p != 0)
p++;

return(p-s);
}

As we have seen before, we can compact this code quite
significantly. The pointer declaration can be combined with
the following assignment line. The pointer can be incre
mented in the while test and we don't, in fact, need the test

itself. Here is the compacted version:

ge

{

tlen(s)

ar *s;

}

char *p
while (

returntf

= s;

*p++) ;
-s-1);

"

r\

-

An introduction to Midi

THIS section Is for everyone who doesn't know
what the Midi sockets are for, and for those who

hanker after making music even If they don't con
sider themselves to be much of a musician.

MUSIC and indeed Midi, on the ST is a consuming, relaxing
and rewarding pastime. However, it can be a very confusing
area to get into, even for the accomplished traditional musi
cian, with lots of new technology to take on board and
many new terms to learn.

We will take you on a trip from the very beginnings to
quite advanced composition and music techniques, such as
sequencing, scorewriting and voice editing. If you are a
newcomer both to music in general and Midi in particular
some of the global terms applied within this field may be at
first confusing. These will be explained where necessary,
though it is not possible to do so every time such a term
appears.

One of the prime aims of this section is to de-mystify Midi.
Likesport, music is for everyone. It is often more fun to play
something yourself, however badly, than it is to listen to a
master musician. Through Midi it is possible for anyone -
even if they only have a small amount of musical ability - to
produce musical arrangements and have lots of fun in the
bargain. Above all, music should be enjoyable and not a
chore.

LET us get Midi - an acronym for Musical Instrument Digital
Interface - under our belt first. Assuming that you know
what a musical instrument is, an interface is something
which joins two things together. So a musical instrument
interface is something which joins two musical instruments
together.

Digital describes the way the interface works and in case
you have just this minute unpacked your ST, it basically
means numbers. That is, the signals used to convey infor-

mation from one instrument to another - via the interface -

are digital signals. Is and Os, exactly the same as the num
bers floating around inside your ST.

The Midi specification, drawn up by the world's major
musical instrument manufacturers in 1983, specifies the data
format - the numbers - to be used to transmit various

musical messages. For example, there is a Midi message
meaning turn a note on - the musical equivalent of pressing
a key on a keyboard - and a message meaning turn it off -
take your finger off the key. Using just these messages we
could program the computer to play a tune on a Midi-
compatible instrument by making it transmit a series of Note
On and Note Off messages through the ST's Midi Out
socket.

There are more aspects of a musical performance to con
sider than the Note Ons and Offs. What about dynamics?
On an acoustic piano, the harder you hit a key the louder
the note sounds. Many synthesisers create this effect by
using a velocity sensitive keyboard. This responds to the
speed with which you press down a key and converts it into
velocity (or loudness) information.

Synthesisers can produce lots of different sounds and you
can change these over Midi by sending Program Change
messages. You can control a synthesiser's pitch bend wheel
and modulation wheel and activate any of a number of
controllers to switch vibrato on and off and control a sustain

footswitch, for example.
There are more Midi messages than these, but all consist

of a series of numbers - that's basically what Midi is about.

IF you connect an instrument to your ST through the Midi
sockets and play some notes the relevant Note On, Note Off
and Velocity messages zap along the cable into the com
puter. Ifyou were running a sequencing program, this infor
mation would be stored as numbers. To reproduce what you
have played you just transmit the messages from the com
puter back to the instrument.

You can see that in such a case the computer is acting very
much like a tape recorder. In fact, much Midi software
adopts a tape recorder approach, with controls labelled
Record, Play, Fast Forward, Rewind and so on. Most musi-

A File Edit Change Windows Goodies

::;«;«!/ 6! 8 < U
::CKM 01 I 5 U
v.mm oi 15 u

8S02U15 81 C 5 U
::0J:8i? (U 8 t 21

T'-r.t S!'i;

. :xi Mi
ff |i

'.Klil'i'Wii! 8(1It
i«:li88 8(1 it

I << MIH |< MTfll HI&; IH IDflTft >lHftit » BAWCELb

Sequencing with
Passport's Master Tracks

Passport's Master
Tracks Junior

step-time
record screen

An introduction to Midi

cians are familiar with the principles of multi-track recording
and transferring that familiarity to the software makes it easy
to understand.

The important thing to realise, however, is that the com
puter is only storing digital signals - numbers - and not
analogue or audio signals which tape recorders use. As a
computer user, you'll appreciate how easy it is to manipulate
numbers.

For example, to play a tune faster using a tape recorder
you must increase the speed at which the tape runs past the
playback head. This, unfortunately, also results in an increase
in pitch. Tape recorders with varispeed controls work this
way.

Using your ST,all you have to do to increase the speed is
to transmit the numbers a little faster. You're not altering the
numbers themselves, so the pitch remains the same. If you
want to increase the pitch that's easy to do, too. Simply add
a constant value to all numbers representing a pitch.

One more example. If you have a tape recorder you'll
know some recordings are noisy with tape hiss. This is a
result of recording signals at a very low level. Multi-track
machines can record several different music parts on differ
ent tracks. To free a track so you can record another part on
it, it's common practice to mix two or more tracks together
by recording them on to a single track, a process known as
bouncing. The more times you bounce, the more noise you
add to the system. This is because you are working with
analogue signals.

As soon as you switch to numbers, signal degradation
becomes a thing of the past. After all, how do you add noise
to the number I ? You see how powerful and flexible digital
signal storage is. There are lots more tricks you can perform
with numbers and we'll be examining some of them in due
course.

e and hardware

NOW you know how Midiworks you can forget about it for
the time being because most programs shield you from the

system's intricacies. Plenty of software will take you down
among the bits and bytes if you want to go that far but you
can create a lot of music without knowing anything about
Midi -just plug in and follow the instructions.

Programs which let you record and playback music are
generally referred to as sequencer software - such as Sonus'
Masterpiece shown here. Not so long ago a sequencer was
a hardware device which could only play a fixed number of
say 10 or 20 notes, hardly enough for a chorus, never mind a
whole tune. But it was enough for a repetitive bass line and
this type of sequencer was very popular with groups such as
Tangerine Dream. Modern sequencers, however, could be
more properly called digital multi-track recorders and, as we
have seen, they can outperform their analogue cousins in
many ways.

One of the drawbacks to digital recording, however, is
that each music part requires a sound source in order to be
heard. Using a tape recorder you can record several parts
with one synth, changing the sounds on the synth each time
you record a part. With Midi the parts are stored as numbers
and the whole performance is played all at once, "live" as it
were. If you record 16 parts you'll need 16 sounds sources
or instruments for playback.

There are two ways around this. One involves using a
multi-track tape recorder. All the music parts are recorded
into the computer one at a time and a timing or synchronis
ation signal is recorded on to one of the tape recorder tracks.

This signal is fed into the computer and used to synchro
nise the playback of each of the parts. They can be played
one at a time, each using a different sound, and recorded this
way on to the multi-track, all in perfect synchronisation.

The second method involves using a multi-timbral
synthesiser. These are very interesting beasties and were
developed as a direct result of Midi. You know synthesisers
can produce lots and lots of sounds, well a multi-timbral
instrument can play several sounds at the same time. A
multi-timbral instrument may be able to play four or eight
different music parts at once - under computer control, of
course - and are ideal companions for Midi sequencers,
adding necessary versatility.

Desk File Edit Filters Clock Options Systen

Sequences
)9 Sequences recorded Seq, 91:SEQ 81

H • B O O B
SEQ *l SEQ 82 SEi

Transport

<mH«3B t> H fe Bm>
Tracks

IBB Tracks Recorded Trk. BAjTRK 81

The Main Screen from

Sonus' Masterpiece

Masterpiece event

editor main screen

TRK 61 TRK ffi TRK B TRK 94 TRK « TRK « TRK 67 TRK «

OO OO ODO
TRK e? TRK 1« TRK 11 TRK 12 TRK 13 if"

Q Q O O
TRK (7 TRK 18 TRK 19 TRK 28 TRK 21 1

O O O O O
m ™* m em ™a

***5k File Edit Chanae Hindoiis JMJMjjB

o

_

Using Midi hardware

NOW that we have a basic understanding of Midi let's
look at its role in music. Its major advantages over
pre-Midi music making can be summed up in two words
- power and flexibility.

The advantaaes of Midi

MIDI gives you the power to record and arrange an enorm
ous number of musical parts and the flexibility to order,
change and edit them. But more than that, as Midi was
conceived as a standard, it enables pieces of equipment
produced by different manufacturers to be connected
together, thus helping stave off the ravages of obsolescence.

Before Midi, trying to connect synths, sequencers and
drum machines together was a veritable nightmare - and
computers just didn't have a look in. There were sometimes
even problems trying to connect instruments produced by
the same manufacturer. With Midi just about any piece of
equipment can be connected to any other.

As Midi uses digital signals, it was just asking for a com
puter to be plugged into the system somewhere along the
line, and it didn't take long for some clever boffins to come
up with Midi software - and that's where we and our ST
come in.

Midi was also responsible for the development of two
new types of instrument - the keyboardless synthesiser -
the expander - and the multi-timbral instrument. Let's see
what's so special about them.

Expanders

MIDI makes music by sending Note On and Note Off mess
ages. So plugging one Midi keyboard into another will allow
you to control the second keyboard from the first, as shown
in Figure I. The controlling keyboard is referred to as a
Master or Mother keyboard, depending upon your genea
logical instincts, and the other keyboard as the slave.

But haven't we got something here surplus to require
ments? If you are to control the second keyboard from the
first a whole set of keys is going to waste. Why buy what
you aren't going to use? So was born the expander, which
has all the features of a synthesiser except a keyboard.
Expanders are ideal for use with your ST, especially if you
aren't a keyboard player. You can program music on the ST
and play it back through an expander.

Multi-timbral instruments

ASyou only have one pair of hands you can only play one
musical part at once. Youwould find it pretty difficult to play
say, a piano, bass and string part at the same time. A
software sequencer, however, allows you to record many
parts of music, one at a time, and store them inside the ST.
The process is not unlike using a multi-track tape recorder.

OK,so you've recorded three music parts in your sequen
cer. Now you need three synthesisers to play them back -
one to produce the bass sound, one a piano and the third a
string sound. This looks as if it could get pretty expensive.

Slave

In l^ ' Out

In m] Out

Master keyboard

!!!!!!

Figure 1:A Master keyboard controlling a slave

But Midi comes to the rescue again with the multi-timbral
synthesiser.

You know that synths can produce lots of different
sounds. In the same way, a multi-timbral device can produce
lots of different sounds at the same time. It's rather like

having many individual synthesisers inside one unit.
It is largely the multi-timbral synthesiser which has made

Midi and computer music so popular and affordable. Multi-
timbral instruments capable of playing eight sounds at once
are available for a few hundred pounds. Such power and
versatility - and at such a price - was unheard of even a few
years ago.

Midi channels

SO how can you use Midi to play several sounds at the same
time? This is accomplished by transmitting different music

parts on different channels. Midi supports 16 channels which
means it can, theoretically, handle the same number of music
lines.

Let's take our piano, bass and drums example. Having
recorded them on to separate tracks in a sequencer, we
would instruct it to play back the tracks on different Midi
channels, say the bass on channel one, the piano on channel
two and the strings on channel three. This is a simple oper
ation on most sequencers.

Next we would assign bass, piano and string sounds on
our multi-timbral synth to their respective Midi channels. The
system works rather like a 16-channel TV set. Although the
synth would receive information for all three parts, the
sounds would ignore messages which were not on their
channel (see Figure II).

You can change the sounds played by each channel by
transmitting a Patch Change message. This is sent auto
matically when you select a new sound on a synth's front
panel.

If two synths were connected on a one to one basis,
changing the sound on one will change the sound on the
other. Note that this will select the same patch number on
the second synth as ifyou had pressed the button yourself -
the actual sound or the parameters which make up the
sound are not sent via Midi.

Usually the ability to transmit different sequencer tracks
on different channels is all that is required to produce multi-

Figure II: Using
Midi channels

to play a three-
part recording

Multi-Timbral Synth

Sequencer Instrument
Receive

chan.

Track No. Inst. Chan. Flute 5

1 Bass 1

b)
Piano 2

2 Piano 2 Midi

cable

Guitar 8

3 Strings 3 Strings 3

4 L Bass 1

5 Brass 7

Using Midi hardware

part music, but some sequencers also let you send patch
change messages on individual channels.

The necessity for this will depend upon your particular
set-up. For example, if you are using a synth which is not
multi-timbral you would set it to receive on a single channel
and select different sounds simply by sending different patch
change numbers. Of course, it would still only be able to
play one sound at a time.

Making an arrangement

IF all this theory seems a little complex, it's really quite simple
in practise. Let's look at a couple of very simple examples
using Activision's The Music Studio and Electronic Arts'
Music Construction Set.

Both allow you to compose three-part music on the screen
in traditional notation by clicking notes on to the stave. Both
programs are basically designed to use the ST's sound chip
but you can also play the music via Midi.

Figure III shows the Midi Parameters screen from The
Music Studio. You can see the instrument names on the left

followed by their Midi channel number, preset number and
range. Music Studio uses different colours to distinguish
different instruments and you can change instruments at will
in the score.

Let's assume you've constructed a piece using lots of
different instruments. To play the sax part via Midi, set its
channel number to the number that the sax sound on your

File Music Studio

j j

I
n

s Flute
t '
r

u

n

e

n

t

M.S

J

Blocks
Haraonica
Sax
Guitar
Clarinet

Hihat
Soprano
Bass
Sax
Clarinet
Piano
Bass

..Uibes
•Hihat

•-

Add None

C

200
-m

m ALLEGRO J:138

synth is set to receive on.
In Figure IIIthe sax is shown as instrument three and it has

been set to transmit on channel three. If you have a multi-
timbral synth, assign the sax sound to channel three.

Ifyou are using a synth which is not multi-timbral, set it to
receive on channel three and change the Preset parameter in
The Music Studio to correspond to the patch number of the
sax sound. In Figure III this is set to 24. In this way you can
make the instruments in the sequencer tie in to the sounds
on your synth. The settings are saved with the score.

Figure IV shows the Music Construction Set's Midi Par
ameters screen. Here you simply assign Midi channels to the
three part numbers (which it calls voices). Preset and Range
values are set from another screen.

The Range values are really transpose functions. Both
programs have a range of only five octaves, but Range lets
you move that octave range high or lower in relation to the
notes you see onscreen.

For example, to make a bass guitar play lower than the
lowest note the program can display, you would simply
lower its range - see how easy it is to alter pitch when the
note data is a series of numbers.

You should now have enough information about Midi to
know how to use a sequencer program to change channels
and sounds on a Midi instrument. Every synth and sequen
cer package has a slightly different method of operation, so it
is important to read the manuals carefully.

You can have a lot of fun simply playing back music files
via Midi and making your own Midi orchestrations and there
are lots of public domain music files available for The Music
Studio.

Options

* y

36- 96
36- 96
36- 96
8- 66
0- 68

! 0- 60f|
36- 96
0- 60
0- 60

36- 96
0- 60
0- 60

12- 72
836- 96
0- 60

4

U
n

d
o

D
o

n

e

t
Figure III:
The Music

Studio's Midi

Parameters screen.

I File Key Tine Global Hove Edit Options Instrunents

Figure IV:
The Music

Construction Set's

Midi Parameters

screen.

o

_

Getting into Midi

Entering notes

NOW that we've seen how useful Midi

can be in the creation of a piece of
multi-part music, let's see how we get
the music into the computer in the first
place. There are two methods of
entering notes: Real-time and step-
time. With real-time input you play a
Midi keyboard and the sequencer
records all the notes, program changes
and so on, live as you play. It also
records all your wrong notes and
sloppy timing. However, remember
that the music is stored as numbers,
and with a little software help you can
make corrections.

Step-time input involves entering
notes one at a time. It's slower, but
ultimately more accurate. It's also an
ideal way of creating music ifyou can't
play a keyboard or Midi instrument.

Most sequencers, especially the pro
fessional variety, are heavily biased
towards real-time recording, although
many now include good step-time
facilities as well.

One of the simplest methods of step-
time input, and one which many ST
musicians will be familiar with, involves
clicking notes on to a stave with the
mouse. This is used by Activision's
Music Studio, Electronic Arts' Music

Construction Set, Kuma's Minstrel and
other similar programs.

This kind of step-time entry is useful,
for example, should you want to enter
tunes from sheet music. It is also quite
rewarding to see music expressed in
notation rather than as a list of num

bers, especially if you've written it
yourself.

These programs can only handle a
few aspects of music notation. You
need to look at pro-level programs
such as C-Lab's Notator if you want
more control and flexibility.

Editing

ONE of the benefits of ST-based
sequencing is the amount of control it
offers over your music once it has been
recorded. Most sequencers have
editing facilities which let you alter
whole sections of the piece or just
individual notes.

Many editors show the notes as a
series of numbers which indicate the
bar and beat at which the note begins,
its velocity and duration. This method
was used even before the ST became

the music machine of the micro world.

It was taken up by many programs
and is still a popular method of editing.
However, it is very numeric and some
programs - such as Steinberg's Pro-24
and Trackman - as shown in Figure I -
have adopted a grid edit system which
many musicians find easier to use.

At the highest level you will find
programs such as C-lab's Notator and
Steinberg's Pro-24 - seen in Figure II -
and MasterScore which show music
data in traditional notation.

Many musicians, especially if they

Desk File Edit Options HIDI Click Quantise

Screen Edit On-naned Bars 1 thru 4 of

C5

U

U

i uoijuiiLiiumi.jmi.iin juululj .n. j.i,.

Figure I: Edit screen from Trackman

are not fully conversant with tradi
tional notation, prefer other methods
of editing. Some sequencers also
include a drum grid edit page in which
you can create drum patterns.

Quantisation

NOW let's see how software can tidy
up real-time note entry. You will find
this in your sequencer under the
heading of quantisation or auto note
correct.

In order to keep track of the timing
of each note, sequencers use a clock
which ticks away during recording and
playback. The speed or resolution of
the sequencer clock is generally fixed
and is expressed in terms of pulses per
quarter note - abbreviated to ppq or
ppqn. It is typically 96 ppq, although it
can be higher or lower. Note that this
is an internal timer, and has nothing to
do with tempo.

The clock reads each note as it is

played and places it on to one of its
clicks or pulses. Four semiquavers for
example, would be placed on clicks I,
7, 13 and 19. Well, that's the ideal, but
ifyour timing is a little sloppy the notes

he
PLOY

may end up on, say, clicks 2, 6, 14 and
21.

The quantisation process looks at
the resolution you wish to correct to -
in this case it would be 16th notes -

and then pulls or pushes the notes on
to the nearest relevant click. This is

done automatically - you just have to
select the resolution.

Quantisation can help tidy up poor
timing, but it can also result in mechan
ical runs of notes. Some sequencers,
therefore, have a human quantise
function which will only correct notes
ifthey are out by a large amount. Com
puters do not have to produce robotic
music unless you want them to.

Tracks and

channels

YOU have probably heard of sequen
cers with 24, 32, 64 or more tracks.
Before we go any further, let's make
clear the difference between a track

and a channel. We've already looked
at Midi channels, particularly in relation
to multi-timbral instruments, so let's

Desk Functions Edit Event Flags Scores Range,'
SMTrackll Pattern; Hacht I Start:2 /l/a I End 15 TT/T Copies :0

III M Hill I II I

Figure II:Score-Edit screen in Pro-24

Getting into Midi

Desk File Track Edit HIDI Options Safety

Oil

02:

03:

♦04:

05:

86:

87:

08:

89:

to:

ll:

12:

13:

14:

15:

16:

17:

13:

19:

20:

bass

nelody S chords
acconpaninent

Copyright 1906
Edensongs West

00>:

Moon Jig

04-ZZ Bl:55 pn

& € Sgnc[A]

3-

1—HI

I—il

!* j

1*
I*

1

88888.00

88800,00

19999,95

19999,95

HI 00008,88 • Thru

SB HtliT

Figure III: Mainscreen of EZ-Track Plusshowing tape recordercontrols

Desk Flic fLUtmnj Track Midi Flags
IjiTracKll Pattern:Thrust I Startil /l /0 I End :5 /l I Copies:0

Figure IV: Drum-Edit screen in Pro-24

see what tracks are and how they are
used in music composition.

Early software sequencers used the
audio multi-track tape recorder as a
model for their method of operation -
for comparison, audio multi-track
recorders have 4, 8, 16 or 24 tracks.

Musicians were used to tape
recorders and by mimicking their fea
tures, software sequencers became a
natural extension of the multi-track. In

fact many current sequencers have
Play. Record, Fast Forward and Rewind
controls - as shown in Figure III,

The concept of a track was carried
over from multi-track recorders, too.

Typically, each instrument would be
recorded on to a different track on the

audio tape, although a drum kit, for
example, would often be recorded
across several tracks.

Early software developers found it
convenient to use the track concept,
and one of the simplest ways of cre
ating music with Midi is to record a
different instrument on each track and

give each a separate channel number.
In fact some sequencers let you allo
cate a specific Midi channel to each
track so that anything you record on it
plays back over that channel.

Other programs take a different
approach and play back a track on the
channel on which it was recorded. The

first method is possibly more useful,
especially for the beginner, as it helps
you think in terms of instrument parts -
which is how music is generally con
structed.

It also allows you to record
everything from one Master keyboard
and play it back on the correct Midi
channels via a multi-timbral expander.

But the multi-track recording con
cept is not the only one. Some software
allows you to record a number of
musical phrases which are not
immediately associated with any track.
You are free to place them anywhere in
the piece, on any track and have them
play back over any Midi channel.

Bouncing and

mixing

MOST sequencers allow you to bounce
or mix tracks together. You can also do
this with audio recorders but how

many audio recorders let you un-mix a
track?

With software, it's simply a matter of
looking for data recorded on different
Midi channels and putting it on differ

ent tracks. This is in addition to other

methods of digital data manipulation
which allow you to speed up, slow
down and transpose your music.

Note then, that tracks and channels

are not the same, although in some
software sequencers they can be
closely linked. It is quite possible, for
instance, for one track to contain infor
mation relating to all 16 Midi channels.

Making an

arrangement

WITH this information under our belt

we can proceed to arrange a piece of
music. Don't think you have to record
a piece from beginning to end. Look at
your sequencer's edit facilities, such as
copy and append tracks, to see how
you can record the music in sections.

Some musicians like to record a

complete single track - say bass or
drums - and use it as a foundation on

which to add chords and solo parts.
Others prefer to record the complete
work in sections, making sure each is
correct before moving on to the next.

The method for you will depend
upon the piece you want to record,
your sequencer - and your tem
perament.

It can often be useful to record a

single part across several tracks,
especially if there are difficult bits
which you are not guaranteed to be
able to play correctly first time through.
When all the tracks sound right playing
together, mix them into one track.

Recording drums

MANY musicians now record drum

tracks into their sequencer in the same
way as they record other music parts.

If you look in your drum machine's
manual you will see that each drum
sound has a note associated with it.

For example, on the Roland TR-505
playing the D above Middle C will
trigger the High Cowbell.

You can usually alter the key number
assignment allowing you to map a
comfortable drum pad layout on to
your keyboard. You can then create a
drum track by playing the keyboard in
real-time. This is likely to produce a
more natural drum track, but you can
always pull beats into line with the
quantisation feature - Steinberg's
Pro-24 drum edit screen is shown in

Figure IV.
One of the benefits of this method of

drum track creation is that the track is

stored with your song so you don't
have to worry about overwriting the
patterns stored in your drum machine.

Experiment with your sequencer
until you become familiar with its use
of tracks and channels. Then when you
know how to use your Midi equipment
to put different sounds on different
channels you will be able to create
musical arrangements of your own.

	Front
	Contents
	ST Adventures
	Beginner's guide to adventures
	Now you're on your way...
	The structure of an adventure
	The challenge
	The puzzles
	Setting the scene
	The parser

	Creating the right atmosphere
	Colossal Cave
	Adventure topography
	Keeping up interest
	A maze in adventures

	Deciphering riddles
	The Babel fish problem
	Hints and tips
	Red herrings and other objects
	Lateral thinking

	It's all a plot
	Thrillers
	Science fiction
	Carry on laughing

	Utilising objects
	Search and discover
	Flies in the ointment
	Lateral thinking

	Making yourself understood
	Restrictive or helpful
	Alternatives to text
	A glossary of adventuring terms
	Additional commands

	ST Graphics
	Learning to draw what you see
	Tree Drawing
	Painting
	Learn by doing
	Obey the rules
	Try this...
	..and this
	Position
	Perspective
	Light and shade
	Size is important

	Freehand drawing and painting
	Palette is important
	Let's get started
	Choosing the colours

	Creating a palette
	The effects of colour
	The colour wheel
	Critical trio
	Colour intensity

	Creating the right colour
	The theory of colour generation
	Mixing colour
	Adding additive primary colours
	Making a colour cube

	The structure of a picture
	Creating the right mood
	Ambiguous drawings
	Isolating the subject
	Impressionism
	Good composition structure

	Tone and composition
	Using perspective
	Tonal values
	Playing with shapes
	Shaping up

	Creating the right response
	Psychology of colours
	Playing with colour
	Planning your picture
	Emotional responses to colour
	Last, but not least

	Practical applications
	The power of colour
	Feelings within pictures
	Mastering colour
	Tonal composition
	Spray it again

	ST Hardware
	Exploring the 520 STFM
	The ST exposed
	Rom and ram
	Support chips
	Glossary of terms

	Exploring the Mega ST
	Opening the case
	The components
	External connectors

	The ST's internal structure
	The Motorola MC68000 microprocessor
	The MC6850 asynchronous communications interface adaptor
	Yamaha YM2149 programmable sound generator
	WD1772 floppy disc controller (FDC)

	Fault finding
	Power problems
	Printer problems
	Disc problems
	Mice problems
	Software problems
	Pin-outs of the ST's ports
	Modem
	Printer
	Midi Out
	Midi In
	Mouse/Joystick
	Cartridge
	Monitor
	Floppy Disc
	Hard Disc
	Joystick

	Exploring the ST's drives
	What makes them tick?
	The track record
	Floppy discs
	Moving ahead
	Magnetic disc storage
	Communicating via the bus
	Chunks of data
	Hard discs

	ST Business
	Getting set up
	Equipping yourself for the job
	The set-up
	Getting to grips
	Good habits

	Getting into word processing
	Word processors
	A closer look
	Other functions
	The next step in word processing
	The quid pro quo
	Common wordprocessor features

	Keeping account
	What is a spreadsheet?
	What's available
	Guide to spreadsheet and accountancy packages for the ST

	Getting into spreadsheets
	A simple price list
	An expenses ledger
	Keeping track of your bank account

	Getting things sorted out
	Databases
	Using a database

	Electronic filing
	A database tutorial
	Glossary

	ST Languages
	First Steps in Basic programming
	First principles
	Try this...
	Getting started
	The Basic differences
	What is Basic?
	PRINT
	Direct commands
	Try this...
	..and this
	Exercises

	Our first program
	Simple arithmetic
	Variables
	Oh, my giddy Aunt
	What's in a name?
	Our first Basic program
	Try this...
	Variable differences

	Real programming
	Real numbers and integer variables
	Specifying a type
	Strings and things
	Getting out the scissors
	Try this...

	Looping the loop
	Repeating yourself
	Avoiding knots
	Taking control
	Stepping out
	Try this...
	FOR ... NEXT loops

	Conditional programming
	Decisions and more decisions
	Basic's lie detector
	Testing, testing
	True OR false?

	The truth of the matter
	Logical operators
	When the test fails
	Implying something else

	While on the other hand...
	Simulating REPEAT?
	WHILE or REPEAT?
	Loop structures
	Data handling
	A new dimension

	Read all about it
	Conversion factors
	Reading data
	Structuring data
	Handling data

	ST Gem
	Harnessing Gem
	The history of Gem
	Gem on the ST
	The structure of Gem
	Gem programs
	Initialisation
	Installing the application

	Handling GEM graphics
	Initialising the VDI
	The Operating System - TOS
	Accessing the VDI
	Try this...

	Filling with style
	The attributes
	Fill styles
	Improving readability
	Initialising Gem

	Drawing polygons
	Defining fill patterns
	A practical example

	Windows on the ST
	Creating a window
	Initialising
	Defining a window
	Try this...

	Creating windows
	Wiping windows
	Clipping output
	Scaling images
	Calculating window sizes
	Limitations

	Putting theory into practice
	Multiple windows
	Changing a window's size
	Window manipulation
	Events
	Window control

	Manipulating windows
	Redrawing a Gem window
	Fulling a window
	Moving a window
	A public domain C compiler
	Controlling sliders

	ST Programming
	How to program in C
	History
	Programming in C
	Step by step
	Which C compiler?
	Making a start
	Glitches

	The structure of a C program
	The variable nature of C
	Repeating for a while
	Print formatting

	Function libraries in C
	Defining your own functions
	Passing parameters
	Returning a result
	Local variables

	Reading the keyboard
	I/O functions
	Storing input
	Input functions
	Limiting input
	Strings
	String functions

	Case conversion
	Numeric input
	Counting up

	Floating point variables
	Printing numbers
	Numeric output
	Inputting floats
	Register variables

	Peeking and poking
	New variables
	Character pointers
	String functions
	Stringing along

	ST Music
	An introduction to Midi
	New technology
	What is Midi?
	Like a tape recorder
	Midi software and hardware

	Using Midi hardware
	The advantages of Midi
	Expanders
	Multi-timbral instruments
	Midi channels
	Making an arrangement

	Getting into Midi
	Entering notes
	Editing
	Quantisation
	Tracks and channels
	Bouncing and mixing
	Making an arrangement
	Recording drums

